GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 20 (11). pp. 4885-4905.
    Publication Date: 2022-01-31
    Description: The presence of gas hydrates (GHs) increases the stiffness and strength of marine sediments. In elasto‐plastic constitutive models, it is common to consider GH saturation (Sh) as key internal variable for defining the contribution of GHs to composite soil mechanical behavior. However, the stress‐strain behavior of GH‐bearing sediments (GHBS) also depends on the microscale distribution of GH and on GH‐sediment fabrics. A thorough analysis of GHBS is difficult, because there is no unique relation between Sh and GH morphology. To improve the understanding of stress‐strain behavior of GHBS in terms of established soil models, this study summarizes results from triaxial compression tests with different Sh, pore fluids, effective confining stresses, and strain histories. Our data indicate that the mechanical behavior of GHBS strongly depends on Sh and GH morphology, and also on the strain‐induced alteration of GH‐sediment fabrics. Hardening‐softening characteristics of GHBS are strain rate‐dependent, which suggests that GH‐sediment fabrics dynamically rearrange during plastic yielding events. We hypothesize that rearrangement of GH‐sediment fabrics, through viscous deformation or transient dissociation and reformation of GHs, results in kinematic hardening, suppressed softening, and secondary strength recovery, which could potentially mitigate or counteract large‐strain failure events. For constitutive modeling approaches, we suggest that strain rate‐dependent micromechanical effects from alterations of the GH‐sediment fabrics can be lumped into a nonconstant residual friction parameter. We propose simple empirical evolution functions for the mechanical properties and calibrate the model parameters against the experimental data. Plain Language Summary Gas hydrates (GHs) are crystalline‐like solids, which are formed from natural gas molecules and water at high pressure and low temperature. GHs, and particularly methane hydrates, are naturally abundant in marine sediments. It is known that the presence of GH increases the mechanical stiffness and strength of sediments, and there is strong effort in analyzing and quantifying these effects in order to understand potential risks of sediment destabilization or slope failure. Based on our experimental results from high‐pressure geotechnical studies, we show that not only the initial amount and distribution of GH are important for the increased strength of GH‐bearing sediments but also the dynamic rearrangement of GH‐sediment fabrics during deformation characterizes the stress‐strain response and enables strength recovery after failure. We propose that different microstructural mechanisms contribute to this rearrangement and strength recovery of GH sediment. However, we consider these complicated processes in a simplified manner in an improved numerical model, which can be applied for geotechnical risk assessment on larger scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  [Talk] In: InterPore 2017, 9. International Conference on Porous Media & Annual Meeting, 08.-11.05.2017, Rotterdam, Netherlands .
    Publication Date: 2018-01-10
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-08-02
    Description: Abrupt fluid emissions from shallow marine sediments pose a threat to seafloor installations like wind farms and offshore cables. Quantifying such fluid emissions and linking pockmarks, the seafloor manifestations of fluid escape, to flow in the sub-seafloor remains notoriously difficult due to an incomplete understanding of the underlying physical processes. Here, using a compositional multi-phase flow model, we test plausible gas sources for pockmarks in the south-eastern North Sea, which recent observations suggest have formed in response to major storms. We find that the presence of free gas in the subsurface effectively damps storm wave-induced pressure changes due to its high compressibility, so that the mobilization of pre-existing gas pockets is unlikely. Rather, our results point to spontaneous appearance of a free gas phase via storm-induced gas exsolution from pore fluids. This mechanism is primarily driven by the pressure-sensitivity of gas solubility. We show that in highly permeable sediments containing gas-rich pore fluids, wave-induced pressure changes result in the appearance of a persistent gas phase. This suggests that seafloor fluid escape structures are not always proxies for overpressured shallow gas and that periodic seafloor pressure changes can induce persistent free gas phase to spontaneously appear.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-07
    Description: Groundwater seepage leads to the formation of theater-headed valleys (THVs) in unconsolidated sediments. In bedrock, the role of groundwater in THV development remains disputed. Here, we integrate field and remote-sensing observations from Gnejna Valley (Maltese Islands) with numerical modeling to demonstrate that groundwater seepage can be the main driver of THV formation in jointed limestone overlying clays. The inferred erosion mechanisms entail (1) widening of joints and fractures by fluid pressure and dissolution and (2) creeping of an underlying clay layer, which lead to slope failure at the valley head and its upslope retreat. The latter is slower than the removal of the talus by creep and sliding on the valley bed. The location and width of THVs are controlled by the location of the master fault and the extent of the damage zone, respectively. The variability of seepage across the fault zone determines the shape of the valley head, with an exponential decrease in seepage away from the fault giving rise to a theater-shaped head that best matches that of Gnejna Valley. Our model may explain the formation of THVs by groundwater in jointed, strong-over-weak chemical sedimentary lithologies, particularly in arid terrestrial settings.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-07
    Description: Offshore meteoric groundwater (OMG) has long been hypothesised to be a driver of seafloor geomorphic processes in continental margins worldwide. Testing this hypothesis has been challenging because of our limited understanding of the distribution and rate of OMG flow and seepage, and their efficacy as erosive/destabilising agents. Here we carry out numerical simulations of groundwater flow and slope stability using conceptual models and evolving stratigraphy - for passive siliciclastic and carbonate margin cases – to assess whether OMG and its evolution during a late Quaternary glacial cycle can generate the pore pressures required to trigger mechanical instabilities on the seafloor. Conceptual model results show that mechanical instabilities by OMG flow are most likely to occur in the outer shelf to upper slope, at or shortly before the Last Glacial Maximum sea level lowstand. Models with evolving stratigraphy show that OMG flow is a key driver of pore pressure development and instability in the carbonate margin case. In the siliciclastic margin case, OMG flow plays a secondary role in preconditioning the slope to failure. The higher degree of spatial/stratigraphic heterogeneity of carbonate margins, lower shear strengths of their sediments, and limited generation of overpressures by sediment loading may explain the higher susceptibility of carbonate margins, in comparison to siliciclastic margins, to mechanical instability by OMG flow. OMG likely played a more significant role in carbonate margin geomorphology (e.g. Bahamas, Maldives) than currently thought. Key Points Offshore meteoric groundwater (OMG) flow can drive mechanical instabilities in the outer shelf to upper slope Such instabilities occur at, or shortly after, the Last Glacial Maximum sea level lowstand Carbonate margins are more susceptible to mechanical instability by OMG than siliciclastic margins
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-02-07
    Description: Subsurface flows, particularly hyporheic exchange fluxes, driven by streambed topography, permeability, channel gradient and dynamic flow conditions provide prominent ecological services such as nitrate removal from streams and aquifers. Stream flow dynamics cause strongly nonlinear and often episodic contributions of nutrient concentrations in river-aquifer systems. Using a fully coupled transient flow and reactive transport model, we investigated the denitrification potential of hyporheic zones during peak-flow events. The effects of streambed permeability, channel gradient and bedform amplitude on the spatio-temporal distribution of nitrate and dissolved organic carbon in streambeds and the associated denitrification potential were explored. Distinct peak-flow events with different intensity, duration and hydrograph shape were selected to represent a wide range of peak-flow scenarios. Our results indicated that the specific hydrodynamic characteristics of individual flow events largely determine the average positive or negative nitrate removal capacity of hyporheic zones, however the magnitude of this capacity is controlled by geomorphological settings (i.e. channel slope, streambed permeability and bedform amplitude). Specifically, events with longer duration and higher intensity were shown to promote higher nitrate removal efficiency with higher magnitude of removal efficiency in the scenarios with higher slope and permeability values. These results are essential for better assessment of the subsurface nitrate removal capacity under the influence of flow dynamics and particularly peak-flow events in order to provide tailored solutions for effective restoration of interconnected river-aquifer systems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-02-07
    Description: Highlights • Sedimentation-driven gas hydrate recycling is cyclic in nature with time scales set by reactive multi-phase transport. • Each cycle can be divided into three distinct phases: 1) gas accumulation phase, 2) gas breakthrough phase and 3) uninhibited hydrate build-up phase. • In the presence of sufficient accumulated gas, convex deposition of hydrate acts like a mechanical nozzle for the ascending gas flow. Gas hydrate recycling is an important process in natural hydrate systems worldwide and frequently leads to the high gas hydrate saturations found close to the base of the gas hydrate stability zone (GHSZ). However, to date it remains enigmatic how, and under which conditions, free gas invades back into the GHSZ. Here we use a 1D compositional multi-phase flow model that accounts for sedimentation to investigate the dominant mechanisms that control free gas flow into the GHSZ using a wide-range of parameters i.e. hydrate formation kinetics, sediment permeability, and capillary pressure. In the first part of this study, we investigate free gas invasion into the GHSZ without any sedimentation, and analyse the dynamics of hydrate formation in the vicinity of the base of GHSZ. This helps establish plausible initial conditions for the main part of the study, namely, hydrate recycling due to rapid and continuous sedimentation. For the case study, we apply our numerical model to the Green Canyon Site 955 in the Gulf of Mexico, where the reported high hydrate saturations are likely a result of hydrate recycling driven by rapid sedimentation. In the model, an initial hydrate layer forms due to the invasion of a specified volume of rising free gas. This hydrate layer is consistent with the local pressure, temperature and salinity state. This hydrate layer is then thermally de-stabilised by sedimentation resulting in free gas formation and hydrate recycling. A key finding of our study is that gas hydrate recycling is a cyclic process which can be divided into three phases of 1) gas hydrate melting and free gas nozzling through the hydrate layer, 2) formation of a new gas hydrate layer as the old layer vanishes, and 3) fast uninhibited grow of a new hydrate layer. High hydrate saturations of about 80% can be attained purely through physical, burial-driven recycling of gas hydrates, without any additional gas input from other sources. Hydrate recycling is, therefore, highly dynamic with its own inherent cyclicity rather than a gradual process paced by the rate of sediment deposition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-02-07
    Description: Abrupt fluid emissions from shallow marine sediments pose a threat to seafloor installations like wind farms and offshore cables. Quantifying such fluid emissions and linking pockmarks, the seafloor manifestations of fluid escape, to flow in the sub-seafloor remains notoriously difficult due to an incomplete understanding of the underlying physical processes. Here, using a compositional multi-phase flow model, we test plausible gas sources for pockmarks in the south-eastern North Sea, which recent observations suggest have formed in response to major storms. We find that the mobilization of pre-existing gas pockets is unlikely because free gas, due to its high compressibility, damps the propagation of storm-induced pressure changes deeper into the subsurface. Rather, our results point to spontaneous appearance of a free gas phase via storm-induced gas exsolution from pore fluids. This mechanism is primarily driven by the pressure-sensitivity of gas solubility, and the appearance of free gas is largely confined to sediments in the vicinity of the seafloor. We show that in highly permeable sediments containing gas-rich pore fluids, wave-induced pressure changes result in the appearance of a persistent gas phase. This suggests that seafloor fluid escape structures are not always proxies for overpressured shallow gas and that periodic seafloor pressure changes can induce persistent free gas phase to spontaneously appear. Key Points - Storm-induced pressure changes can lead to spontaneous appearance of free gas phase near the seafloor - This process is driven by pressure-sensitive phase instabilities - This mechanism could help explain elusive gas sources in recently observed pockmarks in the North Sea
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-02-07
    Description: Focused fluid flow through sub-seafloor pipes and chimneys, and their seafloor manifestations as pockmarks, are ubiquitous. However, the dynamics of flow localization and evolution of fluid escape structures remain poorly understood. Models based on geomechanical mechanisms like hydro-fracturing and porosity wave propagation offer some useful insights into fluid flow and escape dynamics, but face limitations in capturing features like mobilized granular matter, especially in the upper sediment layers where the link between fracture and pockmark is not always clear. Here, we propose a mathematical model based on the multiphase theory of porous media, where changes in subsurface and seafloor morphology are resolved through seepage-induced erosion, fluidization, transport, and re-deposition of granular material. Through simulation of an idealized scenario of gas escape from overpressured shallow gas reservoir, we demonstrate that our model can capture flow localization and formation of pipes, chimneys, and pockmarks. Our simulations show (1) formation of conical focused-flow conduits with a brecciated core and annular gas channels; (2) pockmarks of W and ring shapes; and (3) pulsed release of gas. Sediment erodibility and flow anisotropy control the morphology of focused fluid flow and escape structures, while permeability shows negligible impact. While the geological setting for this study is theoretical, we show that our results have real-world analogs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-02-15
    Description: Highlights • A new numerical model for permafrost in alpine regions. • Importance of lateral fluxes in mountain permafrost modeling. • Influence of unsaturated conditions on freezing processes. • Development of mountain permafrost during warming scenario. Abstract Alpine permafrost environments are highly vulnerable and sensitive to changes in regional and global climate trends. Thawing and degradation of permafrost has numerous adverse environmental, economic, and societal impacts. Mathematical modeling and numerical simulations provide powerful tools for predicting the degree of degradation and evolution of subsurface permafrost as a result of global warming. A particularly significant characteristic of alpine environments is the high variability in their surface geometry which drives large lateral thermal and fluid fluxes along topographic gradients. The combination of these topography-driven fluxes and unsaturated ground makes alpine systems markedly different from Arctic permafrost environments and general geotechnical ground freezing applications, and therefore, alpine permafrost demands its own specialized modeling approaches. In this work, we present a multi-physics permafrost model tailored to subsurface processes of alpine regions. In particular, we resolve the ice–water phase transitions, unsaturated conditions, and capillary actions, and account for the impact of the evolving pore space through freezing and thawing processes. Moreover, the approach is multi-dimensional, and therefore, inherently resolves the topography-driven horizontal fluxes. Through numerical case studies based on the elevation profiles of the Zugspitze (DE) and the Matterhorn (CH), we show the strong influence of lateral fluxes in 2D on active layer dynamics and the distribution of permafrost.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...