GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-09-23
    Description: Model drift in the Labrador Sea in eddy permitting model simulations is examined using a series of configurations based on the NEMO numerical framework. There are two phases of the drift that we can identify, beginning with an initial rapid 3-year period, associated with the adjustment of the model from its initial conditions followed by an extended model drift/adjustment that continued for at least another decade. The drift controlled the model salinity in the Labrador Sea, over-riding the variability. Thus, during this initial period, similar behavior was observed between the inter-annually forced experiments as with perpetual year forcing. The results also did not depend on whether the configuration was global, or regional North Atlantic Ocean. The inclusion of an explicit sea-ice component did not seem to have a significant impact on the interior drift. Clear cut evidence for the drift having an advective nature was shown, based on two separate currents/flow regimes. We find, as expected, the representation of freshwater in the sub-polar gyre’s boundary currents important. But this study also points out another, equally important process and pathway: the input of high salinity mode water from the subtropical North Atlantic. The advective regime is dependent on the details of the model, such as the representation of the freshwater transport in the model’s East Greenland Current being very sensitive to the strength of the local sea surface salinity restoring (and the underlying field that the model is being restored to).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-09-23
    Description: We characterise the representation of the Southern Ocean water mass structure and sea ice within a suite of 15 global ocean-ice models run with the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) protocol. The main focus is the representation of the present (1988-2007) mode and intermediate waters, thus framing an analysis of winter and summer mixed layer depths; temperature, salinity, and potential vorticity structure; and temporal variability of sea ice distributions. We also consider the interannual variability over the same 20 year period. Comparisons are made between models as well as to observation-based analyses where available. The CORE-II models exhibit several biases relative to Southern Ocean observations, including an underestimation of the model mean mixed layer depths of mode and intermediate water masses in March (associated with greater ocean surface heat gain), and an overestimation in September (associated with greater high latitude ocean heat loss and a more northward winter sea-ice extent). In addition, the models have cold and fresh/warm and salty water column biases centred near 50 degrees S. Over the 1933-2007 period, the CORE-II models consistently simulate spatially variable trends in sea-ice concentration, surface freshwater fluxes, mixed layer depths, and 200-700 in ocean heat content. In particular, sea-ice coverage around most of the Antarctic continental shelf is reduced, leading to a cooling and freshening of the near surface waters. The shoaling of the mixed layer is associated with increased surface buoyancy gain, except in the Pacific where sea ice is also influential. The models are in disagreement, despite the common CORE-II atmospheric state, in their spatial pattern of the 20-year trends in the mixed layer depth and sea-ice
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-11-04
    Description: Highlights: • Arctic sea ice extent and solid freshwater in 14 CORE-II models are inter-compared. • The models better represent the variability than the mean state. • The September ice extent trend is reasonably represented by the model ensemble mean. • The descending trend of ice thickness is underestimated compared to observations. • The models underestimate the reduction in solid freshwater content in recent years. Abstract: The Arctic Ocean simulated in fourteen global ocean-sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE II) is analyzed. The focus is on the Arctic sea ice extent, the solid freshwater (FW) sources and solid freshwater content (FWC). Available observations are used for model evaluation. The variability of sea ice extent and solid FW budget is more consistently reproduced than their mean state in the models. The descending trend of September sea ice extent is well simulated in terms of the model ensemble mean. Models overestimating sea ice thickness tend to underestimate the descending trend of September sea ice extent. The models underestimate the observed sea ice thinning trend by a factor of two. When averaged on decadal time scales, the variation of Arctic solid FWC is contributed by those of both sea ice production and sea ice transport, which are out of phase in time. The solid FWC decreased in the recent decades, caused mainly by the reduction in sea ice thickness. The models did not simulate the acceleration of sea ice thickness decline, leading to an underestimation of solid FWC trend after 2000. The common model behavior, including the tendency to underestimate the trend of sea ice thickness and March sea ice extent, remains to be improved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-02-25
    Description: Highlights: • Inter-annual to decadal variability in AMOC from CORE-II simulations is presented. • AMOC variability shows three stages, with maximum transports in mid- to late-1990s. • North Atlantic temporal variability features are in good agreement among simulations. • Such agreements suggest variability is dictated by the atmospheric data sets. • Simulations differ in spatial structures of variability due to ocean dynamics. Simulated inter-annual to decadal variability and trends in the North Atlantic for the 1958–2007 period from twenty global ocean – sea-ice coupled models are presented. These simulations are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The study is Part II of our companion paper (Danabasoglu et al., 2014) which documented the mean states in the North Atlantic from the same models. A major focus of the present study is the representation of Atlantic meridional overturning circulation (AMOC) variability in the participating models. Relationships between AMOC variability and those of some other related variables, such as subpolar mixed layer depths, the North Atlantic Oscillation (NAO), and the Labrador Sea upper-ocean hydrographic properties, are also investigated. In general, AMOC variability shows three distinct stages. During the first stage that lasts until the mid- to late-1970s, AMOC is relatively steady, remaining lower than its long-term (1958–2007) mean. Thereafter, AMOC intensifies with maximum transports achieved in the mid- to late-1990s. This enhancement is then followed by a weakening trend until the end of our integration period. This sequence of low frequency AMOC variability is consistent with previous studies. Regarding strengthening of AMOC between about the mid-1970s and the mid-1990s, our results support a previously identified variability mechanism where AMOC intensification is connected to increased deep water formation in the subpolar North Atlantic, driven by NAO-related surface fluxes. The simulations tend to show general agreement in their temporal representations of, for example, AMOC, sea surface temperature (SST), and subpolar mixed layer depth variabilities. In particular, the observed variability of the North Atlantic SSTs is captured well by all models. These findings indicate that simulated variability and trends are primarily dictated by the atmospheric datasets which include the influence of ocean dynamics from nature superimposed onto anthropogenic effects. Despite these general agreements, there are many differences among the model solutions, particularly in the spatial structures of variability patterns. For example, the location of the maximum AMOC variability differs among the models between Northern and Southern Hemispheres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-11-04
    Description: Highlights: • Arctic liquid freshwater budget simulated in 14 CORE-II models is studied. • The models better represent the temporal variability than the mean state. • Multi-model mean (MMM) FW fluxes compare well with observations. • MMM FWC shows an upward trend in the recent years, with an underestimated rate. • FW flux interannual variability is more consistent where volume flux determines it. Abstract: The Arctic Ocean simulated in 14 global ocean-sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II) is analyzed in this study. The focus is on the Arctic liquid freshwater (FW) sources and freshwater content (FWC). The models agree on the interannual variability of liquid FW transport at the gateways where the ocean volume transport determines the FW transport variability. The variation of liquid FWC is induced by both the surface FW flux (associated with sea ice production) and lateral liquid FW transport, which are in phase when averaged on decadal time scales. The liquid FWC shows an increase starting from the mid-1990s, caused by the reduction of both sea ice formation and liquid FW export, with the former being more significant in most of the models. The mean state of the FW budget is less consistently simulated than the temporal variability. The model ensemble means of liquid FW transport through the Arctic gateways compare well with observations. On average, the models have too high mean FWC, weaker upward trends of FWC in the recent decade than the observation, and low consistency in the temporal variation of FWC spatial distribution, which needs to be further explored for the purpose of model development.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-05-07
    Description: Highlights: • Mid-Atlantic vent mussel populations are contemporarily isolated • Population connectivity can only be maintained in a stepwise manner • Four mussel lineages exist on the Mid-Atlantic Ridge • Recolonization of perturbed vent localities is uncertain Summary: Deep-sea hydrothermal vents are patchily distributed ecosystems inhabited by specialized animal populations that are textbook meta-populations. Many vent-associated species have free-swimming, dispersive larvae that can establish connections between remote populations. However, connectivity patterns among hydrothermal vents are still poorly understood because the deep sea is undersampled, the molecular tools used to date are of limited resolution, and larval dispersal is difficult to measure directly. A better knowledge of connectivity is urgently needed to develop sound environmental management plans for deep-sea mining. Here, we investigated larval dispersal and contemporary connectivity of ecologically important vent mussels (Bathymodiolus spp.) from the Mid-Atlantic Ridge by using high-resolution ocean modeling and population genetic methods. Even when assuming a long pelagic larval duration, our physical model of larval drift suggested that arrival at localities more than 150 km from the source site is unlikely and that dispersal between populations requires intermediate habitats (“phantom” stepping stones). Dispersal patterns showed strong spatiotemporal variability, making predictions of population connectivity challenging. The assumption that mussel populations are only connected via additional stepping stones was supported by contemporary migration rates based on neutral genetic markers. Analyses of population structure confirmed the presence of two southern and two hybridizing northern mussel lineages that exhibited a substantial, though incomplete, genetic differentiation. Our study provides insights into how vent animals can disperse between widely separated vent habitats and shows that recolonization of perturbed vent sites will be subject to chance events, unless connectivity is explicitly considered in the selection of conservation areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-04-19
    Type: Book chapter , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-04-08
    Description: For the past 50 years it has been assumed that the principal pathway for the deep limb of the Atlantic Meridional Overturning Circulation (AMOC) is the Deep Western Boundary Current (DWBC). However, recent observations of Lagrangian floats have shown that the DWBC is not necessarily a unique, dominant, or continuous pathway for these deep waters. A significant portion of the deep water export from the subpolar to the subtropical gyres follows a pathway through the interior of the Newfoundland and subtropical basins, which is constrained by the western boundary and the western flank of the Mid-Atlantic Ridge. The hypothesis that deep eddy-driven recirculation gyres are a mechanism for partitioning the deep limb of the AMOC into the DWBC and this interior pathway is investigated here. Eulerian and Lagrangian analyses of the output of ocean general circulation models at eddy-resolving, eddy-permitting, and non-eddy permitting resolutions are used to test this hypothesis. Eddy-driven recirculation gyres, simulated in the eddy-resolving and eddy-permitting models and similar to recirculations inferred from hydrographic data, are shown to shape the export pathways of deep water from the subpolar to the subtropical gyres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-09-23
    Description: The skill of numerical Lagrangian drifter trajectories in three numerical models is assessed by comparing these numerically obtained paths to the trajectories of drifting buoys in the real ocean. The skill assessment is performed using the two-sample Kolmogorov-Smirnov statistical test. To demonstrate the assessment procedure, it is applied to three different models of the Agulhas region. The test can either be performed using crossing positions of one-dimensional sections in order to test model performance in specific locations, or using the total two-dimensional data set of trajectories. The test yields four quantities: a binary decision of model skill, a confidence level which can be used as a measure of goodness-of-fit of the model, a test statistic which can be used to determine the sensitivity of the confidence level, and cumulative distribution functions that aid in the qualitative analysis. The ordering of models by their confidence levels is the same as the ordering based on the qualitative analysis, which suggests that the method is suited for model validation. Only one of the three models, a 1/10 degree two-way nested regional ocean model, might have skill in the Agulhas region. The other two models, a 1/2 degree global model and a 1/8 degree assimilative model, might have skill only on some sections in the region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-09-23
    Description: Coordinated Ocean-ice Reference Experiments (COREs) are presented as a tool to explore the behaviour of global ocean-ice models under forcing from a common atmospheric dataset. We highlight issues arising when designing coupled global ocean and sea ice experiments, such as difficulties formulating a consistent forcing methodology and experimental protocol. Particular focus is given to the hydrological forcing, the details of which are key to realizing simulations with stable meridional overturning circulations. The atmospheric forcing from [Large, W., Yeager, S., 2004. Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note: NCAR/TN-460+STR. CGD Division of the National Center for Atmospheric Research] was developed for coupled-ocean and sea ice models. We found it to be suitable for our purposes, even though its evaluation originally focussed more on the ocean than on the sea-ice. Simulations with this atmospheric forcing are presented from seven global ocean-ice models using the CORE-I design (repeating annual cycle of atmospheric forcing for 500 years). These simulations test the hypothesis that global ocean-ice models run under the same atmospheric state produce qualitatively similar simulations. The validity of this hypothesis is shown to depend on the chosen diagnostic. The CORE simulations provide feedback to the fidelity of the atmospheric forcing and model configuration, with identification of biases promoting avenues for forcing dataset and/or model development.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...