GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cham : Springer
    Schlagwort(e): Earth sciences ; Earth Sciences ; Geology ; Oceanography ; Geomorphology ; Meereskunde ; Meeresboden ; Meeresgeologie ; Meeressediment ; Geomorphologie ; Meeresboden ; Sonar ; Topografie ; Hydroakustik ; Relief ; Geomorphographie
    Beschreibung / Inhaltsverzeichnis: This book on the current state of knowledge of submarine geomorphology aims to achieve the goals of the Submarine Geomorphology working group, set up in 2013, by establishing submarine geomorphology as a field of research, disseminating its concepts and techniques among earth scientists and professionals, and encouraging students to develop their skills and knowledge in this field. Editors have invited 30 experts from around the world to contribute chapters to this book, which is divided into 4 sections - (i) Introduction & history, (ii) Data & methods, (ii) Submarine landforms & processes and (iv) Conclusions & future directions. Each chapter provides a review of a topic, establishes the state-of-the-art, identifies the key research questions that need to be addressed, and delineates a strategy on how to achieve this. Submarine geomorphology is a priority for many research institutions, government authorities and industries globally. The book is useful for undergraduate and graduate students, and professionals with limited training in this field
    Materialart: Online-Ressource
    Seiten: Online-Ressource (XIII, 556 p. 195 illus., 55 illus. in color, online resource)
    ISBN: 9783319578521
    Serie: Springer Geology
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Geowissenschaften, Berlin : Ernst & Sohn, 1988, 15(1997), 9, Seite 301-305, 0933-0704
    In: volume:15
    In: year:1997
    In: number:9
    In: pages:301-305
    Materialart: Artikel
    Seiten: Ill., Kt.
    ISSN: 0933-0704
    Sprache: Deutsch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Geochemistry, geophysics, geosystems, Hoboken, NJ : Wiley, 2000, 9(2008), 5, 1525-2027
    In: volume:9
    In: year:2008
    In: number:5
    In: extent:22
    Beschreibung / Inhaltsverzeichnis: New 3-D seismic investigations carried out across the Sevastopol mud volcano in the Sorokin Trough present 3-D seismic data of a mud volcano in the Black Sea for the first time. The studies allow us to image the complex three-dimensional morphology of a collapse structured mud volcano and to propose an evolution model. The Sevastopol mud volcano is located above a buried diapiric structure with two ridges and controlled by fluid migration along a deep fault system, which developed during the growth of the diapirs in a compressional tectonic system. Overpressured fluids initiated an explosive eruption generating the collapse depression of the Sevastopol mud volcano. Several cones were formed within the depression by subsequent quiet mud extrusions. Although gas hydrates have been recovered at various mud volcanoes in the Sorokin Trough, no gas hydrates were sampled at the Sevastopol mud volcano. A BSR (bottom-simulating reflector) is missing in the seismic data; however, high-amplitude reflections (bright spots) observed above the diapiric ridge near the mud volcano at a relatively constant depth correspond to the approximate depth of the base of the gas hydrate stability zone (BGHSZ). Thus we suggest that gas hydrates are present locally where gas/fluid flow occurs related to mud volcanism, i.e., above the diapir and close to the feeder channel of the mud volcano. Depth variations of the bright spots of up to 200 ms TWT might be caused by temperature variations produced by variable fluid flow.
    Materialart: Online-Ressource
    Seiten: 22
    ISSN: 1525-2027
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 249(2008), 3/4, Seite 206-225, 1872-6151
    In: volume:249
    In: year:2008
    In: number:3/4
    In: pages:206-225
    Beschreibung / Inhaltsverzeichnis: Three pockmarks named "Hydrate Hole", "Black Hole", and"Worm Hole" were studied in the northern Congo Fan area at water depths around 3100 m. The cross-disciplinary investigations include seafloor observations by TV-sled, sampling by TV-guided grab and multicorer as well as gravity coring, in addition to hydroacoustic mapping by a swath system, a parametric sediment echosounder and a deep-towed sidescan sonar. The pockmarks are morphologically complex features consisting of one or more up to 1000 m wide and 10-15 m deep depressions revealed by swath-mapping. High reflection amplitudes in the sediment echosounder records indicate the presence of a 2530 m thick shallow sediment section with gas hydrates, which have been recovered by gravity corer. Hydrates, chemosynthetic communities, and authigenic carbonates clearly indicate fluid flow from depths, which we propose to be mainly in the form of ascending gas bubbles rather than advection of methane-rich porewater. Evidence for seepage at the seafloor is confined to small areas within the seafloor depressions and was revealed by characteristic backscatter facies. Small meter-scale sized depressions signified as pitsʺ exist in or close to the pockmarks but seafloor observations did not reveal evidence for the presence of typical seep organisms or authigenic carbonates. Areas of intermediate backscatter were inhabited by vesicomyid clams in soft sediments. High backscatter was associated with vestimentiferan tubeworms (Siboglinidae) and authigenic carbonates. We discuss the three different environments "pits","vesicomyid clams", "vestimentifera/carbonate" in the light of differences in the geochemical setting. Pits are probably formed by escaping gas bubbles but seepage is too transient to sustain chemosynthetic life. Vesicomyid clams are present in sediments with gas hydrate deposits. However, the hydrates occur several meters below the surface indicating a lower flux compared to the vestimentifera/carbonate environment. In the latter environment, accumulated carbonates and clam shells indicate that fine grained particles have been eroded away. Gas hydrates were found in this environment at depths below about 50 cm suggesting the highest supply with methane compared to the other environments.
    Materialart: Online-Ressource
    ISSN: 1872-6151
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Schlagwort(e): Earth sciences ; Earth Sciences ; Sedimentology ; Oceanography ; Natural disasters ; Geotechnical engineering ; Physical geography ; Earth sciences ; Sedimentology ; Oceanography ; Natural disasters ; Geotechnical engineering ; Physical geography ; Konferenzschrift 2015 ; Submarine Gleitung ; Meeresgeologie ; Submarine Gleitung ; Massenbewegung ; Meeresgeologie ; Meeresboden ; Suspensionsströmung ; Submarine Gleitung ; Turbidit
    Beschreibung / Inhaltsverzeichnis: 1. Submarine Mass Movements and Their Consequences: Progress and Challenges -- Part I Submarine Mass Movement in Margin Construction and Economic Significance2. The Role of Submarine Landslides in the Law of the Sea -- 3. Fabric Development and Pore-Throat Reduction in a Mass-Transport Deposit in the Jubilee Gas Field, Eastern Gulf of Mexico: Consequences for the Sealing Capacity of MTDs -- 4. Seismic geomorphology of the Israel Slump Complex in the central Levant Basin (SE Mediterranean) -- 5. Multiple Megaslide Complexes and their Significance for the Miocene stratigraphic evolution of the offshore Amazon Basin -- 6. Kinematics of submarine slope failures in the deepwater Taranaki Basin, New Zealand -- Part II Failure dynamics from landslide geomorphology -- 7. Postglacial Mass Failures in the Inner Hardangerfjorden System, Western Norway -- 8. Onshore and offshore geomorphological features of the El Golfo debris avalanche (El Hierro, Canary Islands) -- 9. New insights on failure and post-failure dynamics of submarine landslides on the intra-slope Palmarola ridge (Central Tyrrhenian Sea) -- 10. Assessment of Canyon Wall Failure Process from Multibeam Bathymetry and Remotely Operated Vehicle (ROV) Observations, U.S. Atlantic Continental Margin -- 11. The Chuí Megaslide Complex: regional-scale submarine landslides on the Southern Brazilian Margin -- 12. Submarine landslides and incised canyons of the southeast Queensland continental margin -- 13. Novel method to map the morphology of submarine landslide headwall scarps using Remotely Operated Vehicles -- 14. Flow behaviour of a giant landslide and debris flow entering Agadir Canyon, NW Africa -- 15. Fine-Scale Morphology of Tubeworm Slump, Monterey Canyon -- 16. Submarine slide topography and the Distribution of Vulnerable Marine Ecosystems: A Case Study in the Ionian Sea (Eastern Mediterranean) -- Part III Geotechnical aspects of mass movement -- 17. Shear Strength of Siliciclastic Sediments from Passive and Active Margins (0-100 meters below seafloor): Insights into Seismic Strengthening -- 18. A small volume calibration chamber for cone penetration testing (CPT) on submarine soils -- 19. Underwater Mass Movements in Lake Mjøsa, Norway -- 20. In situ cyclic softening of marine silts by vibratory CPTU at Orkdalsfjord test site, mid Norway -- 21. First results of the geotechnical in situ investigation for soil characterisation along the upper slope off Vesterålen - Northern Norway -- 22. A novel micro-shear tester for failure analysis of fine and cohesive granular matter -- 23. Knickpoint migration induced by landslide: Evidence from laboratory to field observations in Wabush Lake -- 24. Multiple flow slide experiment in the Westerschelde Estuary, The Netherlands -- Part IV Multidisciplinary case studies -- 25. Submarine mass wasting on Hovgaard Ridge, Fram Strait, European Arctic -- 26. 3D seismic investigations of Pleistocene Mass Transport Deposits and Glacigenic Debris Flows on the North Sea Fan, NE Atlantic Margin -- 27. Do embedded volcaniclastic layers serve as potential glide planes? – An integrated analysis from the Gela Basin offshore southern Sicily -- 28. Sediment failure affecting muddy contourites on the continental slope offshore northern Norway – lessons learned and some outstanding issues -- 29. Mass Wasting History within Lake Ohrid Basin (Albania/Macedonia) over the last 600ka -- 30. Implications of Sediment Dynamics in Mass Transport along the Pianosa Ridge (Northern Tyrrhenian Sea) -- 31. Late-Holocene Mass Movements in High Arctic East Lake, Melville Island (Western Canadian Arctic Archipelago) -- 32. Pleistocene Mass Transport Complexes off Barbados accretionary prism (Lesser Antilles) -- 33. Exploring the Influence of Deepwater Currents as Potential Triggers for Slope Instability -- Part V Tectonics and mass movements -- 34. French alpine foreland Holocene paleoseismicity revealed by coeval mass wasting deposits in glacial lakes -- 35. Spatial and temporal relation of submarine landslides and faults along the Israeli continental slope, eastern Mediterranean -- 36. Earthquake induced landslides in Lake Éternité, Québec, Canada -- 37. Large Mass Transport Deposits in Kumano Basin, Nankai Trough, Japan -- 38. Insights into Effectiveness of Simplified Seismic Displacement Procedures to Evaluate Earthquake Behavior of a Deepwater Slope -- Part VI Fluid flow and gas hydrates -- 39. Deriving the Rate of Salt Rise at the Cape Fear Slide Using New Seismic Data -- 40. Submarine slope instabilities coincident with shallow gas hydrate systems: insights from New Zealand examples -- 41. Eel Canyon Slump Scar and Associated Fluid Venting -- 42. Shallow gas and the development of a weak layer in submarine spreading, Hikurangi margin (New Zealand) -- 43. Stability of fine-grained sediments subject to gas hydrate dissociation in the Arctic continental margin -- Part VII Mass transport deposits in modern and outcrop sedimentology -- 44. Soft-sediment deformation associated with mass transport deposits of the aAnsa basin (Spanish Pyrenees) -- 45. Synsedimentary tectonics and mass wasting along the Alpine margin in Liassic time -- 46. Meso-scale kinematic indicators in exhumed mass transport deposits: definitions and implications -- 47. Morphodynamics of supercritical turbidity currents in the channel-lobe transition zone -- 48. Tiny fossils, big impact: the role of foraminifera-enriched condensed section in arresting the movement of a large retrogressive submarine landslide in the Gulf of Mexico -- 49. Inclusion of substrate blocks within a mass transport deposit: A case study from Cerro Bola, Argentina -- Part VIII Numerical and statistical analysis -- 50. GIS catalogue of submarine landslides in the Spanish Continental Shelf: potential and difficulties for susceptibility assessment -- 51. Tempo and triggering of large submarine landslides – Statistical analysis for hazard assessment -- 52. Morphological controls on submarine slab failures -- 53. Incorporating Correlated Variables into GIS-Based Probabilistic Submarine Slope Stability Assessments -- 54. Quantifying the key role of slope material peak strength – using Discrete Element simulations -- 55. Correction Factors for 1-D Runout Analyses of Selected Submarine Slides -- Part IX Tsunami generation from slope failure -- 56. Volcanic generation of tsunamis: Two New Zealand palaeo-events -- 57. Tsunami-genesis due to retrogressive landslides on an inclined seabed -- 58. Geothermal System as the Cause of the 1979 Landslide Tsunami in Lembata Island, Indonesia -- 59. Towards a spatial probabilistic submarine landslide hazard model for submarine canyons -- 60. Coupled modelling of the failure and tsunami of a submarine debris avalanche offshore central New Zealand -- 61. Observations of coastal landslide-generated tsunami under an ice cover: the case of Lac-des-Seize-Îles, Québec, Canada -- Index.
    Materialart: Online-Ressource
    Seiten: Online-Ressource (XIII, 621 p. 256 illus., 219 illus. in color, online resource)
    Ausgabe: 1st ed. 2016
    ISBN: 9783319209791
    Serie: Advances in Natural and Technological Hazards Research 41
    RVK:
    Sprache: Englisch
    Anmerkung: 1. Submarine Mass Movements and Their Consequences: Progress and ChallengesPart  I Submarine Mass Movement in Margin Construction and Economic Significance2. The Role of Submarine Landslides in the Law of the Sea -- 3. Fabric Development and Pore-Throat Reduction in a Mass-Transport Deposit in the Jubilee Gas Field, Eastern Gulf of Mexico: Consequences for the Sealing Capacity of MTDs -- 4. Seismic geomorphology of the Israel Slump Complex in the central Levant Basin (SE Mediterranean) -- 5. Multiple Megaslide Complexes and their Significance for the Miocene stratigraphic evolution of the offshore Amazon Basin -- 6. Kinematics of submarine slope failures in the deepwater Taranaki Basin, New Zealand -- Part II Failure dynamics from landslide geomorphology -- 7. Postglacial Mass Failures in the Inner Hardangerfjorden System, Western Norway -- 8. Onshore and offshore geomorphological features of the El Golfo debris avalanche (El Hierro, Canary Islands) -- 9. New insights on failure and post-failure dynamics of submarine landslides on the intra-slope Palmarola ridge (Central Tyrrhenian Sea) -- 10. Assessment of Canyon Wall Failure Process from Multibeam Bathymetry and Remotely Operated Vehicle (ROV) Observations, U.S. Atlantic Continental Margin -- 11. The Chuí Megaslide Complex: regional-scale submarine landslides on the Southern Brazilian Margin -- 12. Submarine landslides and incised canyons of the southeast Queensland continental margin -- 13. Novel method to map the morphology of submarine landslide headwall scarps using Remotely Operated Vehicles -- 14. Flow behaviour of a giant landslide and debris flow entering Agadir Canyon, NW Africa -- 15. Fine-Scale Morphology of Tubeworm Slump, Monterey Canyon -- 16. Submarine slide topography and the Distribution of Vulnerable Marine Ecosystems: A Case Study in the Ionian Sea (Eastern Mediterranean) -- Part III Geotechnical aspects of mass movement -- 17. Shear Strength of Siliciclastic Sediments from Passive and Active Margins (0-100 meters below seafloor): Insights into Seismic Strengthening -- 18. A small volume calibration chamber for cone penetration testing (CPT) on submarine soils -- 19. Underwater Mass Movements in Lake Mjøsa, Norway -- 20. In situ cyclic softening of marine silts by vibratory CPTU at Orkdalsfjord test site, mid Norway -- 21. First results of the geotechnical in situ investigation for soil characterisation along the upper slope off Vesterålen - Northern Norway -- 22. A novel micro-shear tester for failure analysis of fine and cohesive granular matter -- 23. Knickpoint migration induced by landslide: Evidence from laboratory to field observations in Wabush Lake -- 24. Multiple flow slide experiment in the Westerschelde Estuary, The Netherlands -- Part IV Multidisciplinary case studies -- 25. Submarine mass wasting on Hovgaard Ridge, Fram Strait, European Arctic -- 26. 3D seismic investigations of Pleistocene Mass Transport Deposits and Glacigenic Debris Flows on the North Sea Fan, NE Atlantic Margin -- 27. Do embedded volcaniclastic layers serve as potential glide planes? - An integrated analysis from the Gela Basin offshore southern Sicily -- 28. Sediment failure affecting muddy contourites on the continental slope offshore northern Norway - lessons learned and some outstanding issues -- 29. Mass Wasting History within Lake Ohrid Basin (Albania/Macedonia) over the last 600ka -- 30. Implications of Sediment Dynamics in Mass Transport along the Pianosa Ridge (Northern Tyrrhenian Sea) -- 31. Late-Holocene Mass Movements in High Arctic East Lake, Melville Island (Western Canadian Arctic Archipelago) -- 32. Pleistocene Mass Transport Complexes off Barbados accretionary prism (Lesser Antilles) -- 33. Exploring the Influence of Deepwater Currents as Potential Triggers for Slope Instability -- Part V Tectonics and mass movements -- 34. French alpine foreland Holocene paleoseismicity revealed by coeval mass wasting deposits in glacial lakes -- 35. Spatial and temporal relation of submarine landslides and faults along the Israeli continental slope, eastern Mediterranean -- 36. Earthquake induced landslides in Lake Éternité, Québec, Canada -- 37. Large Mass Transport Deposits in Kumano Basin, Nankai Trough, Japan -- 38. Insights into Effectiveness of Simplified Seismic Displacement Procedures to Evaluate Earthquake Behavior of a Deepwater Slope -- Part VI Fluid flow and gas hydrates -- 39. Deriving the Rate of Salt Rise at the Cape Fear Slide Using New Seismic Data -- 40. Submarine slope instabilities coincident with shallow gas hydrate systems: insights from New Zealand examples -- 41. Eel Canyon Slump Scar and Associated Fluid Venting -- 42. Shallow gas and the development of a weak layer in submarine spreading, Hikurangi margin (New Zealand) -- 43. Stability of fine-grained sediments subject to gas hydrate dissociation in the Arctic continental margin -- Part VII Mass transport deposits in modern and outcrop sedimentology -- 44. Soft-sediment deformation associated with mass transport deposits of the aAnsa basin (Spanish Pyrenees) -- 45. Synsedimentary tectonics and mass wasting along the Alpine margin in Liassic time -- 46. Meso-scale kinematic indicators in exhumed mass transport deposits: definitions and implications -- 47. Morphodynamics of supercritical turbidity currents in the channel-lobe transition zone -- 48. Tiny fossils, big impact: the role of foraminifera-enriched condensed section in arresting the movement of a large retrogressive submarine landslide in the Gulf of Mexico -- 49. Inclusion of substrate blocks within a mass transport deposit: A case study from Cerro Bola, Argentina -- Part VIII Numerical and statistical analysis -- 50. GIS catalogue of submarine landslides in the Spanish Continental Shelf: potential and difficulties for susceptibility assessment -- 51. Tempo and triggering of large submarine landslides - Statistical analysis for hazard assessment -- 52. Morphological controls on submarine slab failures -- 53. Incorporating Correlated Variables into GIS-Based Probabilistic Submarine Slope Stability Assessments -- 54. Quantifying the key role of slope material peak strength - using Discrete Element simulations -- 55. Correction Factors for 1-D Runout Analyses of Selected Submarine Slides -- Part IX Tsunami generation from slope failure -- 56. Volcanic generation of tsunamis: Two New Zealand palaeo-events -- 57. Tsunami-genesis due to retrogressive landslides on an inclined seabed -- 58. Geothermal System as the Cause of the 1979 Landslide Tsunami in Lembata Island, Indonesia -- 59. Towards a spatial probabilistic submarine landslide hazard model for submarine canyons -- 60. Coupled modelling of the failure and tsunami of a submarine debris avalanche offshore central New Zealand -- 61. Observations of coastal landslide-generated tsunami under an ice cover: the case of Lac-des-Seize-Îles, Québec, Canada -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Schlagwort(e): Hochschulschrift
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (34 Blatt = 29 MB) , Illustrationen, Diagramme
    Sprache: Deutsch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Schlagwort(e): Hochschulschrift
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource
    DDC: 550
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Schlagwort(e): Hochschulschrift ; Straße von Messina ; Tektonik ; Tsunami
    Materialart: Online-Ressource
    Seiten: Online-Ressource
    DDC: 550
    Sprache: Englisch
    Anmerkung: Kiel, Univ., Diss., 2015
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Schlagwort(e): Hochschulschrift ; Meeresgeologie ; Rutschung
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (xiv, 125 Seiten) , Illustrationen
    DDC: 551.307
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Buch
    Buch
    Cham, Switzerland : Springer
    Schlagwort(e): Earth sciences ; Geology ; Oceanography ; Geomorphology ; Earth Sciences ; Earth Sciences ; Earth sciences ; Geology ; Geomorphology ; Oceanography ; Earth sciences ; Geology ; Geomorphology ; Oceanography ; Aufsatzsammlung ; Geomorphologie ; Meereskunde ; Meeresboden ; Meeresgeologie
    Materialart: Buch
    Seiten: xiii, 556 Seiten , Illustrationen, Diagramme, Karten , 25 cm
    ISBN: 3319578529 , 9783319578514
    Serie: Springer geology
    DDC: 550
    RVK:
    RVK:
    Sprache: Englisch
    Anmerkung: Includes bibliographical references
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...