GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    Online Resource
    Online Resource
    Berlin/Boston :Walter de Gruyter GmbH,
    Keywords: Microalgae--Biotechnology. ; Biomass energy. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (288 pages)
    Edition: 1st ed.
    ISBN: 9783110225020
    Language: English
    Note: Intro -- Preface -- 1 Introduction - Discovering Microalgae as Source for Sustainable Biomass -- 1.1 All life eminates from the sun! All life originates from the sea! -- 1.2 Sustainable microalgal biomass of the third generation -- 1.2.1 Microalgae produce 5 times more biomass per hectare than terrestrial crops -- 1.2.2 Microalgae can be cultivated in arid areas which are not suitable for agriculture -- 1.2.3 Microalgae exhibit high lipid contents over 50% and high titers of other products -- 1.3 The technical challenge -- 1.3.1 Microalgae can use CO2 and sunlight -- 1.3.2 Microalgae can deliver cheap sustainable biomass for bulk chemicals and biofuels -- 1.3.3 Microalgae can be produced nearly everywhere -- 1.3.4 Microalgae do not need pesticides and only little fertilizers -- 1.3.5 Closed photobioreactors as tools of choice -- The biological potential of microalgae -- 2 Phylogeny and systematics of microalgae: An overview -- 2.1 Introduction -- 2.2 Diversity and evolution of microalgae -- 2.2.1 Algal diversity -- 2.2.2 Algal evolution -- 2.3 Cyanobacteria: The prokaryotic algae -- 2.4 Plantae or Archaeplastida supergroup: Green algae, red algae and glaucophytes -- 2.4.1 Viridiplantae: The green algae distributed over two phyla -- 2.4.2 Rhodophyta: Red algae -- 2.4.3 Glaucophytes -- 2.5 Chromalveolate algae: The photosynthetic Stramenopiles (heterokont algae) -- 2.5.1 Diatoms (Bacillariophyta -- photosynthetic Stramenopiles) -- 2.5.2 Eustigmatophyceae and Xanthophyceae (photosynthetic Stramenopiles) -- 2.5.3 Other photosynthetic Stramenopiles -- 2.5.3.1 Raphidophyceae -- 2.5.3.2 Synurophyceae and Chrysophyceae -- 2.5.3.3 Phaeophyceae -- 2.6 Chromalveolate algae: coccolithophorids and haptophyte algae -- 2.7 Chromalveolate algae: Dinoflagellates (Dinophyta) -- 2.8 Euglenoids (Excavata supergroup) -- Acknowledgements -- References. , 3 Balancing the conversion efficiency from photon to biomass -- 3.1 Introduction -- 3.2 Definition of important terms -- 3.2.1 Photosynthetic efficiency -- 3.2.2 Growth efficiency (photon to biomass efficiency) -- 3.3 Physiological dynamics of processes which control biological energy conversion efficiency -- 3.3.1 Absorption -- 3.3.2 Regulation and efficiency of photochemistry -- 3.3.3 Regulation of electron flow -- 3.3.4 Regulation of carbon allocation -- 3.4 Conclusions for microalgal biotechnology -- References -- 4 Algae symbiosis with eukaryotic partners -- 4.1 Introduction to algae-specific symbiosis -- 4.1.1 Importance of algae symbiotic relationships -- 4.1.2 Modes of algae symbiosis with eukaryotes -- 4.2 Aquatic systems -- 4.2.1 Algae symbiosis with Cnidaria -- 4.2.1.1 Symbiont uptake and management -- 4.2.1.2 Flux of primary metabolites in host and symbiont -- 4.2.1.3 Optimizing photosynthesis for efficient metabolite exchange -- 4.2.1.4 Symbiont-derived secondary metabolites -- 4.2.1.5 Effects of environmental stress on symbiosis -- 4.2.2 Algae symbiosis with Porifera -- 4.2.2.1 Morphology of sponge-algae associations -- 4.2.2.2 Symbiont uptake, specificity and transmission -- 4.2.2.3 Flux of primary metabolites in host and symbiont -- 4.2.2.4 Symbiont-derived secondary metabolites -- 4.2.2.5 Effects of environmental stress on symbiosis -- 4.2.3 Algae symbiosis with Mollusca -- 4.2.3.1 Morphology of mollusc-algae associations -- 4.2.3.2 Symbiont uptake and maintenance -- 4.2.3.3 Flux of primary metabolites in host and symbiont -- 4.3 Terrestrial system -- 4.3.1 Lichens: Ecological pioneers -- 4.3.2 Modes of lichen symbiosis -- 4.3.3 Lichen taxonomy and evolution -- 4.3.4 Lichen morphology -- 4.3.5 Symbiotic interactions -- 4.3.6 Lichen growth and propagation -- 4.3.6.1 Lichen propagation -- 4.3.7 Symbiotic benefits for algal photobionts. , 4.3.8 Biotechnological aspects of lichen/mycobiont cultivation -- 4.3.9 Potential of bioactive lichen-derived metabolites -- References -- 5 Genetic engineering, methods and targets -- 5.1 Introduction -- 5.2 Methods in genetic engineering of eukaryotic microalgae -- 5.2.1 Transformation -- 5.2.1.1 Glass beads and silicon whiskers -- 5.2.1.2 Particle bombardment -- 5.2.1.3 Electroporation -- 5.2.1.4 Agrobacterium tumefaciens-mediated transformation -- 5.2.2 Promoters -- 5.2.3 Gene silencing -- 5.2.4 Codon usage -- 5.2.5 Improvement of expression rates and secretion of proteins -- 5.2.6 Selection markers -- 5.2.7 Reporter genes -- 5.3 Examples for biotechnological relevant proteins -- 5.3.1 Proteins expressed in Chlamydomonas reinhardtii -- 5.3.2 Recombinant proteins in other microalgae -- 5.4 Future prospects/outlook -- 5.4.1 Methods for genetic engineering -- 5.4.2 Products from genetically modified microalgae -- Acknowledgements -- References -- 6 Algenics: Providing microalgal technologies for biological drugs -- 6.1 Background and inception of the company -- 6.2 Development and optimization of proprietary technologies -- 6.3 From proofs of concept to therapeutic product candidates -- References -- Technical Means for Algae Production -- 7 Raceways-based production of algal crude oil -- 7.1 Introduction -- 7.2 Raceways -- 7.2.1 General configuration -- 7.2.2 Flow in a raceway -- 7.2.3 Power consumption for mixing -- 7.2.4 Paddlewheel design -- 7.2.5 Location -- 7.2.6 Evaporation from raceways -- 7.2.7 Temperature variations -- 7.2.8 Culture pH and carbon dioxide demand -- 7.2.9 Oxygen removal -- 7.2.10 Potential for contamination -- 7.2.11 Irradiance variation with depth -- 7.2.12 Local and average values of specific growth rate -- 7.2.13 Raceway capital cost -- 7.3 Algal crude oil as replacement petroleum -- 7.4 Algae biomass production. , 7.4.1 Productivity of biomass and oil -- 7.4.2 Limits to algal biomass productivity -- 7.4.2.1 Photosynthetic efficiency -- 7.4.2.2 Why are microalgae more efficient than terrestrial plants? -- 7.5 Economics of algal crude oil -- 7.5.1 Residual biomass -- 7.6 Concluding remarks -- 7.7 Nomenclature -- References -- 8 Cellana LLC: Algae-based products for a sustainable future -- 8.1 Introduction -- 8.2 Cellana technology and demonstration facility -- 8.3 Biorefinery approach -- 8.4 Prospects -- References -- 9 Principles of photobioreactor design -- 9.1 Introduction -- 9.2 Major factors governing the production of microalgae -- 9.3 Open systems -- 9.3.1 Open raceways -- 9.3.1.1 Technical issues -- 9.3.1.2 Scale-up -- 9.3.1.3 Drawbacks -- 9.4 Enclosed photobioreactors -- 9.4.1 Flat-panel photobioreactors -- 9.4.1.1 Technical issues -- 9.4.1.2 Scale-up -- 9.4.1.3 Drawbacks -- 9.4.2 Tubular photobioreactors -- 9.4.2.1 Technical issues -- 9.4.2.2 Scale-up -- 9.5 Summary of major characteristics of large-scale algal cultures systems -- Acknowledgements -- References -- 10 Knowledge models for the engineering and optimization of photobioreactors -- 10.1 Introduction -- 10.2 Theoretical background for radiation measurement and handling -- 10.2.1 Main physical variables -- 10.2.2 Solar illumination -- 10.3 Modeling light-limited photosynthetic growth in photobioreactors -- 10.3.1 Overview of the modeling approach -- 10.3.2 Mass balances -- 10.3.3 Stoichiometry of photosynthetic growth -- 10.3.3.1 Simple stoichiometric equations -- 10.3.3.2 Structured stoichiometric equations -- 10.3.4 Kinetic modeling of photosynthetic growth -- 10.3.5 Energetics of photobioreactors -- 10.3.6 Radiative transfer modeling -- 10.3.6.1 Radiative transfer equation -- 10.3.6.2 Optical and radiative properties for micro-organisms. , 10.4 Illustrations of the utility of modeling for the understanding and optimization of cultivation systems -- 10.4.1 Understanding the role of light-attenuation conditions -- 10.4.1.1 Illuminated fraction y -- 10.4.1.2 Achieving maximal productivities with appropriate definition of light-attenuation conditions -- 10.4.1.3 Prediction of biomass concentration and productivity -- 10.4.1.4 Engineering formula for assessment of maximum kinetic performance in PBRs -- 10.4.2 Solar production -- 10.4.2.1 Prediction of PBR productivity as a function of radiation conditions -- 10.4.2.2 Engineering formula for maximal productivity determination -- 10.4.3 Modeling light/dark cycle effects -- 10.5 Acknowledgments -- 10.6 Nomenclature -- References -- 11 Construction and assessment parameters of photobioreactors -- 11.1 Introduction -- 11.2 Technical design features -- 11.2.1 Material issues -- 11.2.2 Geometric parameters -- 11.2.3 Hydrodynamic parameters -- 11.3 Measured performance criteria -- 11.4 Mode and stability of operation -- 11.5 Conclusion -- References -- 12 Autotrophic, industrial cultivation of photosynthetic microorganisms using flue gas as carbon source and Subitec's flat-panel-airlift (FPA) cultivation system -- 12.1 Introduction -- 12.2 Subitec GmbH and the flat-panel-airlift system -- 12.3 From laboratory to pilot scale -- References -- 13 Case study: Microalgae production in the self-supported ProviAPT vertical flat-panel photobioreactor system -- 13.1 Introduction -- 13.2 ProviAPT technology and features -- 13.3 Prospects -- References -- 14 Case study: Biomass from open ponds -- 14.1 Introduction -- 14.2 Production process -- 14.2.1 Removal of coarse solids -- 14.2.2 Concentrating the biomass -- 14.2.3 Washing the biomass -- 14.2.4 Differences to closed photo-bioreactors -- 14.3 Energy consumption -- 14.4 Survey of process relevant data. , References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Berlin/Boston :Walter de Gruyter GmbH,
    Keywords: Microalgae -- Biotechnology. ; Microalgae -- Biotechnology -- Economic aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (342 pages)
    Edition: 1st ed.
    ISBN: 9783110298321
    Language: English
    Note: Intro -- Preface -- List of contributing authors -- 1 Introduction - Integration in microalgal biotechnology -- 1.1 Integration on the process level -- 1.2 Integration on the metabolic level -- 1.3 Integration into environmental conditions -- 1.4 Adaptation to cultural realities -- Integrated production processes -- 2 Products from microalgae: An overview -- 2.1 Microalgae: An introduction -- 2.2 Products -- 2.2.1 Use and production of algal biomass -- 2.2.2 Microalgae for human nutrition -- 2.2.2.1 Spirulina (Arthrospira) -- 2.2.2.2 Chlorella -- 2.2.2.3 Dunaliella salina -- 2.2.3 Microalgae for animal feed -- 2.2.4 Microalgae as natural fertilizer -- 2.2.5 Microalgae in cosmetics -- 2.2.6 Fine chemicals -- 2.2.6.1 PUFAs -- 2.2.6.2 Pigments -- Pigments as antioxidants -- Pigments as natural colorants -- 2.2.6.3 Polysaccharides -- 2.2.6.4 Recombinant proteins -- 2.2.6.5 Stable isotopes -- 2.2.7 Micro- and nanostructured particles -- 2.2.8 Bulk chemicals -- 2.2.9 Energy production from microalgae -- 2.2.9.1 Biodiesel -- 2.2.9.2 Bio-ethanol -- 2.2.9.3 Bio-hydrogen -- 2.2.9.4 Bio-gas -- 2.2.9.5 Biorefinery of microalgae -- 2.3 Conclusion -- References -- 3 Spirulina production in volcano lakes: From natural resources to human welfare -- 3.1 Introduction -- 3.2 Natural Spirulina lakes in Myanmar -- 3.3 Environmental parameters of Myanmar Spirulina lakes -- 3.4 Spirulina production from natural lakes -- 3.4.1 Harvesting -- 3.4.2 Washing and dewatering -- 3.4.3 Extrusion and sun drying -- 3.4.4 Lake-side enhancement ponds -- 3.5 Sustainable Spirulina production from volcanic crater lakes -- 3.6 Myanmar Spirulina products -- 3.7 Spirulina as biofertilizer -- 3.8 Spirulina as a biogas enhancer -- 3.9 Spirulina as a source of biofuel -- 3.10 Myanmar and German cooperation in microalgae biotechnology -- 3.11 Discussion -- 3.12 Conclusion -- Acknowledgments. , References -- 4 Case study of a temperature-controlled outdoor PBR system in Bremen -- Acknowledgments -- References -- 5 Algae for aquaculture and animal feeds -- 5.1 Introduction -- 5.2 Microalgae use in aquaculture hatcheries -- 5.2.1 Microalgal strains used in aquaculture hatcheries -- 5.2.2 Methods of microalgae cultivation for aquaculture -- 5.2.3 Role of microalgae in aquaculture hatcheries -- 5.2.3.1 Microalgae as a feed source for filter-feeding aquaculture species -- 5.2.3.2 Microalgae as a feed source for zooplanktonic live prey -- 5.2.3.3 Benthic microalgae as a feed source for gastropod mollusks and echinoderms -- 5.2.3.4 Addition of microalgae to fish larval rearing tanks -- 5.2.3.5 Use of microalgal concentrates in aquaculture hatcheries -- 5.3 Use of algae in formulated feeds for aquaculture species and terrestrial livestock -- 5.3.1 Algae as a supplement to enhance the nutritional value of formulated feeds -- 5.3.1.1 Vitamins and minerals -- 5.3.1.2 Pigments -- 5.3.1.3 Fatty acids -- 5.3.2 Algae as a potential feed ingredient: source of protein and energy -- 5.4 Outlook -- References -- 6 Algae as an approach to combat malnutrition in developing countries -- 6.1 Introduction -- 6.2 Algae in human food -- 6.3 Microalgae as a solution against malnutrition: meet Spirulina -- 6.4 Small-scale Spirulina production as a development tool -- 6.5 Spirulina as a business to combat malnutrition -- 6.6 Spirulina and its place in food aid and development policies -- 6.7 Evidence of Spirulina in malnutrition -- 6.8 Conclusion -- Acknowledgements -- References -- 7 Hydrogen production by natural and semiartificial systems -- 7.1 Biological hydrogen production of microorganisms -- 7.2 Photobiological hydrogen production by green algae -- 7.3 Photohydrogenproduction by cyanobacterial design cells -- 7.4 Photohydrogen production by a "biobattery". , 7.5 Photobioreactor design for hydrogen production -- 7.6 Photobioreactor geometry -- 7.7 Process control -- 7.8 Upscaling strategies -- References -- 8 The carotenoid astaxanthin from Haematococcus pluvialis -- 8.1 Introduction -- 8.2 Characteristics and biosynthesis -- 8.2.1 Chemical forms of astaxanthin -- 8.2.2 Astaxanthin biosynthesis -- 8.2.3 Function of astaxanthin -- 8.3 Haematococcus pluvialis -- 8.3.1 General characteristics -- 8.3.2 Factors responsible for ax accumulation -- 8.3.3 Industrial production of Haematococcus -- 8.4 Conclusions and outlook -- References -- 9 Screening and development of antiviral compound candidates from phototrophic microorganisms -- 9.1 Introduction -- 9.2 Supply of natural compounds from microalgae -- 9.3 Sterilizable photobioreactors -- 9.4 Antiviral agents from microalgae -- 9.5 Antiviral screening -- 9.5.1 Primary target of screening -- 9.5.2 Smart screening approach -- 9.5.3 Basic process sequence -- 9.5.4 Antiviral activity and immunostimulating effects of Arthrospira platensis -- 9.5.5 Characterization of novel antiviral spirulan-like compounds -- 9.6 Conclusion -- Acknowledgements -- References -- 10 Natural product drug discovery from microalgae -- 10.1 Introduction -- 10.1.1 Eukaryotic microalgae -- 10.1.1.1 Dinoflagellates -- 10.1.1.2 Diatoms -- 10.1.2 Cyanobacteria -- 10.1.2.1 Proteinase inhibitors -- 10.1.2.2 Cytotoxic compounds -- 10.1.2.3 Antiviral substances -- 10.1.2.4 Antimicrobial metabolites -- 10.1.2.5 Miscellaneous bioactivities -- 10.1.3 Three examples of current microalgal drug research projects -- 10.1.3.1 Dolastatins as leads for anti-cancer drugs -- 10.1.3.2 Cryptophycins as leads for anti-cancer drugs -- 10.1.3.3 Microcystins as targeted anti-cancer drugs -- 10.1.4 Outlook -- References -- Socio-economic and environmental considerations. , 11 Biorefining of microalgae: Production of high-value products, bulk chemicals and biofuels -- 11.1 Introduction -- 11.2. Structural biorefining approach of microalgae -- 11.2.1 Approach -- 11.2.2 Cell disruption, fractionation and mild cell disruption of organelles -- 11.2.3 Extraction and fractionation of high-value components -- 11.2.4 Economically feasible continuous biorefining concept -- 11.3. Conclusions -- References -- 12 Development of a microalgal pilot plant: A generic approach -- 12.1 Understanding the aims of the pilot plant -- 12.2 Pilot plant location and site selection -- 12.3 Develop the process flow diagram -- 12.4 Know what will be required to conduct experiments and measure the data -- 12.5 Sizing of the units -- 12.6 Plant layout -- 12.7 HAZOP study -- 12.8 Multidisciplinary review of the design -- 12.9 Tender for plant construction -- 12.10 Finalize the design -- References -- 13 Finding the bottleneck: A research strategy for improved biomass production -- 13.1 Introduction: What do we expect from cell engineering? -- 13.1.1 The need for domestication of microalgae -- 13.1.2 Limitation of traditional approaches to strain improvement -- 13.2 Algal domestication through chloroplast genetic engineering -- 13.2.1 Chloroplast engineering in Chlamydomonas: progress and challenges -- 13.2.2 A synthetic biology approach to chloroplast metabolic engineering -- 13.2.3 Mitigating the risks and concerns of GM algae -- 13.3 Algal domestication through nucleus genetic engineering -- 13.3.1 Improving light to biomass conversion by regulation of the pigment optical density of algal cultures -- 13.4 Models for predicting growth in photobioreactors -- 13.4.1 PAM fluorimetry: a keyhole to look into the photosynthetic machinery -- 13.4.2 Microalgae cultivation in photobioreactors: the fluctuating light effects. , 13.4.3 Standard model for growth under an exponential light gradient -- 13.5 Cells' response to changing environments: the example of nitrogen limitation -- Acknowledgments -- References -- 14 Trends driving microalgae-based fuels into economical production -- 14.1 Introduction -- 14.2 Leading trends -- 14.2.1 Microalgae biorefinery for food, feed, fertilizer and energy production -- 14.2.2 Biofuel production from low-cost microalgae grown in wastewater -- 14.2.3 Biogas upgrading with microalgae production for production of electricity -- 14.2.4 Hydrocarbon milking of modified Botryococcus microalgae strains -- 14.2.5 Hydrogen production combining direct and indirect microalgae biophotolysis -- 14.2.6 Direct ethanol production from autotrophic cyanobacteria -- 14.3 Production platforms -- 14.3.1 Ocean -- 14.3.2 Lakes -- 14.3.3 Raceways -- 14.3.4 Photobioreactors -- 14.3.5 Fermenters -- 14.4 Conclusions -- References -- 15 Microalgal production systems: Global impact of industry scale-up -- 15.1 Microalgal biotechnology -- 15.2 Global challenges, production and demand -- 15.2.1 Global fuel production and demand -- 15.2.2 Global food production and demand -- 15.2.3 Solar irradiance and areal requirement -- 15.2.4 Global challenges -- 15.3 Potential production and limitations -- 15.3.1 Solar energy and geographic location -- 15.3.2 Potential productivity -- 15.3.3 Land resources -- 15.3.4 Carbon management and associated costs -- 15.3.4.1 CO2 requirements -- 15.3.4.2 CO2 utilization and sequestration -- 15.3.4.3 CO2 delivery -- 15.3.5 Nutrient management and associated costs -- 15.3.5.1 Phosphorus -- 15.3.5.2 Nitrogen -- 15.3.5.3 Nutrient recycling -- 15.3.6 Water management and associated costs -- 15.4 Global impact of scale-up -- 15.4.1 Addressing world production -- 15.4.2 Economics of large-scale microalgal production systems. , 15.4.3 Techno-economic analysis of microalgal production systems.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Microalgae-Biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (205 pages)
    Edition: 1st ed.
    ISBN: 9783319238081
    Series Statement: Advances in Biochemical Engineering/Biotechnology Series ; v.153
    DDC: 579.8
    Language: English
    Note: Intro -- Status, Challenges, Goals -- Contents -- 286 Biology and Industrial Applications of Chlorella: Advances and Prospects -- Abstract -- 1 Introduction -- 2 Morphology, Ultrastructure, and Taxonomy -- 3 Growth Physiology -- 4 Mass Cultivation -- 4.1 Photoautotrophy -- 4.2 Mixotrophy -- 4.3 Heterotrophy -- 5 Potential Applications -- 5.1 Chlorella as Human Food and Animal Feed -- 5.2 Chlorella as a Source of Carotenoids -- 5.3 Chlorella for CO2 Biomitigation and Wastewater Bioremediation -- 5.4 Chlorella as Feedstock for Biofuels -- 5.5 Chlorella as Cell Factories for Recombinant Proteins -- 6 Conclusions and Future Prospects -- Acknowledgments -- References -- 331 Microalgae as a Source of Lutein: Chemistry, Biosynthesis, and Carotenogenesis -- Abstract -- 1 Introduction -- 2 Structure -- 3 Bioactivities and Impact on Health -- 4 Distribution -- 5 Mode of Cultivation -- 5.1 Photoautotrophic Cultivation -- 5.2 Heterotrophic Cultivation -- 6 Biosynthesis -- 6.1 Formation of Isopentenyl Diphosphate (IPP) -- 6.2 Formation of Geranylgeranyl Pyrophosphate (GGPP) -- 6.3 Biosynthesis and Desaturation of Phytoene -- 6.4 Cyclization of Lycopene -- 6.5 Hydroxylation -- 7 Regulation of Carotenogenesis -- 7.1 Intercommunication of Cellular Organelles and Retrograde Regulation of Photosynthetic Genes -- 7.2 Stimulation of Carotenogenesis by Oxidative Stress -- 7.2.1 Enhancement of Carotenoid Synthesis Induced by ROS -- 7.2.2 Expression Variation of Genes Encoding Enzymes Involved in Carotenoid Biosynthesis After Oxidative Stress Treatment -- 7.2.3 ROS Sensing Signaling Cascade Involved in Simulating Carotenogenesis -- 8 Conclusion and Future Perspectives -- 9 Acknowledgments -- References -- 287 Modelling of Microalgae Culture Systems with Applications to Control and Optimization -- Abstract -- 1 Introduction. , 2 Building Blocks of Microalgae Culture Models -- 3 Modeling of Intrinsic Biological Properties -- 3.1 Nutrient-Limited Growth and Decay -- 3.2 TAG Synthesis -- 3.3 Pigment Synthesis -- 3.4 Light-Limitation Effects -- 3.5 Temperature-Limitation Effect -- 4 Modeling of Physical Properties -- 4.1 Light Distribution -- 4.2 Microalgae Cell Trajectories -- 4.3 Temperature Variation -- 5 Towards Multiphysics Models of Microalgae Culture Systems -- 5.1 Chemostat Culture -- 5.2 Open Questions -- 6 Towards Model-Based Optimization and Control of Microalgae Culture Systems -- 6.1 Model-Based Operations Optimization -- 6.2 Monitoring and Control -- 7 Conclusions -- Acknowledgments -- References -- 328 Monitoring of Microalgal Processes -- Abstract -- 1 Introduction: Monitoring Needs for Cultivation of Microalgae -- 2 Process Variables in Microalgal Cultivations -- 3 Current Measuring Methods for Online Monitoring of Physicochemical Process Parameters -- 3.1 Light Intensity -- 3.2 Temperature -- 3.3 pH -- 3.4 Carbon Dioxide in Liquid and Gaseous Phases -- 3.5 Oxygen in Liquid and Gaseous Phases -- 3.6 Inorganic Nutrients -- 4 Current Measuring Methods for Online Monitoring of Biological Process Parameters -- 4.1 Biomass Concentration -- 4.2 Cell Count, Cell Morphology, and Contamination -- 4.3 Photosynthetic Efficiency and Quantum Yield -- 4.4 Case Study: Decrease in Quantum Yield Monitored by Online PAM Fluorometry -- 4.5 Biomass Composition -- 4.6 Culture Health Monitoring -- 4.7 Concentration of Extracellular Products -- 5 Novel Measuring Methods with Potential for Online Monitoring of Physicochemical Process Parameters -- 6 Novel Measuring Methods with Potential for Online Monitoring of Biological Process Parameters -- 6.1 2D Fluorometry -- 6.2 IR Spectroscopy -- 6.3 Flow Cytometry -- 6.4 Raman Spectroscopy -- 6.5 NMR Spectroscopy. , 6.6 Dielectric Spectroscopy -- 6.7 Monitoring of Selected Process Variables with Novel Measuring Methods -- 6.7.1 Biomass Concentration -- 6.7.2 Cell Count, Cell Morphology, Contamination -- 6.7.3 Case Study: In Situ Microscopy Measuring Cell Count and Cell Size Distribution -- 6.7.4 Biomass Composition: Pigment and Lipid Content -- 7 Software Sensors and Other Computer-Aided Monitoring Methods -- 8 Perspectives and Outlook for Online Measurements in Microalgal Cultivations -- References -- 327 Photobioreactors in Life Support Systems -- Abstract -- 1 Introduction -- 2 Potential of Microalgae with Respect to Remote Applications -- 3 Requirements, Opportunities, and Challenges of Photobioreactors for Space Missions -- 3.1 Illumination of Microalgae for Remote Applications -- 3.1.1 Accessory Pigments, Absorption, and Action Spectra of Chlamydomonas reinhardtii -- 3.1.2 Sensory Pigments in Chlamydomonas reinhardtii and Their Physiological Role -- 3.1.3 Phototaxis as Photomotile Behavior of This Alga -- 3.1.4 Circadian Clock Provides Rhythm for Phototactic Behavior -- 3.1.5 Blue Light not Only Induces Phototaxis2026 -- 3.1.6 Red Light -- 3.1.7 Geometrical Design Aspects of Photobioreactors for Remote Applications Regarding Light -- 3.1.8 Illumination Concepts and Designs for Biological Life Support Systems in Spaceflight -- 3.1.9 Consequences for Potential Mono- and Dichromatic Illumination of C. reinhardtii CC1690 for Remote/Spaceflight Applications -- 3.1.10 Ground-Based Experiments with Mono- and Dichromatic Illumination -- 3.2 Aeration of Microalgae for Remote Applications by Membranes -- 3.2.1 Mass Transfer Through Membranes in Photobioreactors -- 3.2.2 Membrane-Aerated Bioreactors -- 3.2.3 Membrane-Aerated Photobioreactors -- 3.2.4 Membrane-Aerated Photobioreactors for Space. , 3.2.5 Consequences for Potential Bubble-Free Membrane Aeration of Microalgae-Photobioreactors for Remote/Spaceflight Application -- 4 The ModuLES Reactor -- 5 Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (26 Seiten, 1,81 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 02WIL1455B , Verbundnummer 01179639 , Weiteren Autor dem Berichtsblatt entnommen , Paralleltitel dem englischen Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassung: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Forschungsbericht ; Biomineralisation ; Coccolith ; Calciumcarbonat ; Emiliania huxleyi
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (13 Seiten, 589,76 KB)
    Language: German
    Note: Förderkennzeichen BMBF 031A158A. - Verbund-Nummer 01134425 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Forschungsbericht ; Glucose ; Lipide ; Isotopenmarkierung ; Mikroalgen ; Photoreaktor ; Brennstoffzelle ; Modul
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (20 Seiten, 1,92 MB) , Diagramme, Illustrationen
    Language: German
    Note: Förderkennzeichen BMBF 031B0028B. - Verbund-Nummer 01160948 , weiteren Autor dem Berichtsblatt entnommen. - Paralleltitel dem englischen Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassung: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Forschungsbericht ; Bioreaktor ; Biogasgewinnung ; Methan ; Kohlendioxid ; Wasser ; Algen ; Photosynthese
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (50 Seiten, 997 KB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 16SV3873. - Verbund-Nummer W3ALG101 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Karlsruhe : Institut für Bio- und Lebensmitteltechnik, Bereich III, Bioverfahrenstechnik, Karlsruher Institut für Technologie (KIT)
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: Online-Ressource (15 S., 973 KB) , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 0313852B. - Verbund-Nr. 01051114 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Auch als gedr. Ausg. vorhanden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Forschungsbericht ; Bioreaktor ; Mikroalgen ; Glykolate ; Vergärung ; Methan
    Type of Medium: Online Resource
    Pages: Online-Ressource (31 S., 1,58 MB) , Ill., graph. Darst.
    Language: German
    Note: Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Förderkennzeichen BMBF 03V0003. - Verbund-Nr. 01081665. - Engl. Berichtsblatt u.d.T.: Validation of an innovative process for the production of biomethane in a two-compartment-biofilm reactor : project part C: development, construction and validation of the reactor , Systemvoraussetzungen: Acrobat reader. , Mit dt. u. engl. Zsfassung
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Forschungsbericht ; Bioreaktor ; Wasserstofferzeugung ; Algen
    Type of Medium: Online Resource
    Pages: Online-Ressource (20 S., 1,34 MB) , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 03SF0361C. - Verbund-Nr. 01071253 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...