GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Berlin/Boston :Walter de Gruyter GmbH,
    Schlagwort(e): Microalgae--Biotechnology. ; Biomass energy. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (288 pages)
    Ausgabe: 1st ed.
    ISBN: 9783110225020
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- 1 Introduction - Discovering Microalgae as Source for Sustainable Biomass -- 1.1 All life eminates from the sun! All life originates from the sea! -- 1.2 Sustainable microalgal biomass of the third generation -- 1.2.1 Microalgae produce 5 times more biomass per hectare than terrestrial crops -- 1.2.2 Microalgae can be cultivated in arid areas which are not suitable for agriculture -- 1.2.3 Microalgae exhibit high lipid contents over 50% and high titers of other products -- 1.3 The technical challenge -- 1.3.1 Microalgae can use CO2 and sunlight -- 1.3.2 Microalgae can deliver cheap sustainable biomass for bulk chemicals and biofuels -- 1.3.3 Microalgae can be produced nearly everywhere -- 1.3.4 Microalgae do not need pesticides and only little fertilizers -- 1.3.5 Closed photobioreactors as tools of choice -- The biological potential of microalgae -- 2 Phylogeny and systematics of microalgae: An overview -- 2.1 Introduction -- 2.2 Diversity and evolution of microalgae -- 2.2.1 Algal diversity -- 2.2.2 Algal evolution -- 2.3 Cyanobacteria: The prokaryotic algae -- 2.4 Plantae or Archaeplastida supergroup: Green algae, red algae and glaucophytes -- 2.4.1 Viridiplantae: The green algae distributed over two phyla -- 2.4.2 Rhodophyta: Red algae -- 2.4.3 Glaucophytes -- 2.5 Chromalveolate algae: The photosynthetic Stramenopiles (heterokont algae) -- 2.5.1 Diatoms (Bacillariophyta -- photosynthetic Stramenopiles) -- 2.5.2 Eustigmatophyceae and Xanthophyceae (photosynthetic Stramenopiles) -- 2.5.3 Other photosynthetic Stramenopiles -- 2.5.3.1 Raphidophyceae -- 2.5.3.2 Synurophyceae and Chrysophyceae -- 2.5.3.3 Phaeophyceae -- 2.6 Chromalveolate algae: coccolithophorids and haptophyte algae -- 2.7 Chromalveolate algae: Dinoflagellates (Dinophyta) -- 2.8 Euglenoids (Excavata supergroup) -- Acknowledgements -- References. , 3 Balancing the conversion efficiency from photon to biomass -- 3.1 Introduction -- 3.2 Definition of important terms -- 3.2.1 Photosynthetic efficiency -- 3.2.2 Growth efficiency (photon to biomass efficiency) -- 3.3 Physiological dynamics of processes which control biological energy conversion efficiency -- 3.3.1 Absorption -- 3.3.2 Regulation and efficiency of photochemistry -- 3.3.3 Regulation of electron flow -- 3.3.4 Regulation of carbon allocation -- 3.4 Conclusions for microalgal biotechnology -- References -- 4 Algae symbiosis with eukaryotic partners -- 4.1 Introduction to algae-specific symbiosis -- 4.1.1 Importance of algae symbiotic relationships -- 4.1.2 Modes of algae symbiosis with eukaryotes -- 4.2 Aquatic systems -- 4.2.1 Algae symbiosis with Cnidaria -- 4.2.1.1 Symbiont uptake and management -- 4.2.1.2 Flux of primary metabolites in host and symbiont -- 4.2.1.3 Optimizing photosynthesis for efficient metabolite exchange -- 4.2.1.4 Symbiont-derived secondary metabolites -- 4.2.1.5 Effects of environmental stress on symbiosis -- 4.2.2 Algae symbiosis with Porifera -- 4.2.2.1 Morphology of sponge-algae associations -- 4.2.2.2 Symbiont uptake, specificity and transmission -- 4.2.2.3 Flux of primary metabolites in host and symbiont -- 4.2.2.4 Symbiont-derived secondary metabolites -- 4.2.2.5 Effects of environmental stress on symbiosis -- 4.2.3 Algae symbiosis with Mollusca -- 4.2.3.1 Morphology of mollusc-algae associations -- 4.2.3.2 Symbiont uptake and maintenance -- 4.2.3.3 Flux of primary metabolites in host and symbiont -- 4.3 Terrestrial system -- 4.3.1 Lichens: Ecological pioneers -- 4.3.2 Modes of lichen symbiosis -- 4.3.3 Lichen taxonomy and evolution -- 4.3.4 Lichen morphology -- 4.3.5 Symbiotic interactions -- 4.3.6 Lichen growth and propagation -- 4.3.6.1 Lichen propagation -- 4.3.7 Symbiotic benefits for algal photobionts. , 4.3.8 Biotechnological aspects of lichen/mycobiont cultivation -- 4.3.9 Potential of bioactive lichen-derived metabolites -- References -- 5 Genetic engineering, methods and targets -- 5.1 Introduction -- 5.2 Methods in genetic engineering of eukaryotic microalgae -- 5.2.1 Transformation -- 5.2.1.1 Glass beads and silicon whiskers -- 5.2.1.2 Particle bombardment -- 5.2.1.3 Electroporation -- 5.2.1.4 Agrobacterium tumefaciens-mediated transformation -- 5.2.2 Promoters -- 5.2.3 Gene silencing -- 5.2.4 Codon usage -- 5.2.5 Improvement of expression rates and secretion of proteins -- 5.2.6 Selection markers -- 5.2.7 Reporter genes -- 5.3 Examples for biotechnological relevant proteins -- 5.3.1 Proteins expressed in Chlamydomonas reinhardtii -- 5.3.2 Recombinant proteins in other microalgae -- 5.4 Future prospects/outlook -- 5.4.1 Methods for genetic engineering -- 5.4.2 Products from genetically modified microalgae -- Acknowledgements -- References -- 6 Algenics: Providing microalgal technologies for biological drugs -- 6.1 Background and inception of the company -- 6.2 Development and optimization of proprietary technologies -- 6.3 From proofs of concept to therapeutic product candidates -- References -- Technical Means for Algae Production -- 7 Raceways-based production of algal crude oil -- 7.1 Introduction -- 7.2 Raceways -- 7.2.1 General configuration -- 7.2.2 Flow in a raceway -- 7.2.3 Power consumption for mixing -- 7.2.4 Paddlewheel design -- 7.2.5 Location -- 7.2.6 Evaporation from raceways -- 7.2.7 Temperature variations -- 7.2.8 Culture pH and carbon dioxide demand -- 7.2.9 Oxygen removal -- 7.2.10 Potential for contamination -- 7.2.11 Irradiance variation with depth -- 7.2.12 Local and average values of specific growth rate -- 7.2.13 Raceway capital cost -- 7.3 Algal crude oil as replacement petroleum -- 7.4 Algae biomass production. , 7.4.1 Productivity of biomass and oil -- 7.4.2 Limits to algal biomass productivity -- 7.4.2.1 Photosynthetic efficiency -- 7.4.2.2 Why are microalgae more efficient than terrestrial plants? -- 7.5 Economics of algal crude oil -- 7.5.1 Residual biomass -- 7.6 Concluding remarks -- 7.7 Nomenclature -- References -- 8 Cellana LLC: Algae-based products for a sustainable future -- 8.1 Introduction -- 8.2 Cellana technology and demonstration facility -- 8.3 Biorefinery approach -- 8.4 Prospects -- References -- 9 Principles of photobioreactor design -- 9.1 Introduction -- 9.2 Major factors governing the production of microalgae -- 9.3 Open systems -- 9.3.1 Open raceways -- 9.3.1.1 Technical issues -- 9.3.1.2 Scale-up -- 9.3.1.3 Drawbacks -- 9.4 Enclosed photobioreactors -- 9.4.1 Flat-panel photobioreactors -- 9.4.1.1 Technical issues -- 9.4.1.2 Scale-up -- 9.4.1.3 Drawbacks -- 9.4.2 Tubular photobioreactors -- 9.4.2.1 Technical issues -- 9.4.2.2 Scale-up -- 9.5 Summary of major characteristics of large-scale algal cultures systems -- Acknowledgements -- References -- 10 Knowledge models for the engineering and optimization of photobioreactors -- 10.1 Introduction -- 10.2 Theoretical background for radiation measurement and handling -- 10.2.1 Main physical variables -- 10.2.2 Solar illumination -- 10.3 Modeling light-limited photosynthetic growth in photobioreactors -- 10.3.1 Overview of the modeling approach -- 10.3.2 Mass balances -- 10.3.3 Stoichiometry of photosynthetic growth -- 10.3.3.1 Simple stoichiometric equations -- 10.3.3.2 Structured stoichiometric equations -- 10.3.4 Kinetic modeling of photosynthetic growth -- 10.3.5 Energetics of photobioreactors -- 10.3.6 Radiative transfer modeling -- 10.3.6.1 Radiative transfer equation -- 10.3.6.2 Optical and radiative properties for micro-organisms. , 10.4 Illustrations of the utility of modeling for the understanding and optimization of cultivation systems -- 10.4.1 Understanding the role of light-attenuation conditions -- 10.4.1.1 Illuminated fraction y -- 10.4.1.2 Achieving maximal productivities with appropriate definition of light-attenuation conditions -- 10.4.1.3 Prediction of biomass concentration and productivity -- 10.4.1.4 Engineering formula for assessment of maximum kinetic performance in PBRs -- 10.4.2 Solar production -- 10.4.2.1 Prediction of PBR productivity as a function of radiation conditions -- 10.4.2.2 Engineering formula for maximal productivity determination -- 10.4.3 Modeling light/dark cycle effects -- 10.5 Acknowledgments -- 10.6 Nomenclature -- References -- 11 Construction and assessment parameters of photobioreactors -- 11.1 Introduction -- 11.2 Technical design features -- 11.2.1 Material issues -- 11.2.2 Geometric parameters -- 11.2.3 Hydrodynamic parameters -- 11.3 Measured performance criteria -- 11.4 Mode and stability of operation -- 11.5 Conclusion -- References -- 12 Autotrophic, industrial cultivation of photosynthetic microorganisms using flue gas as carbon source and Subitec's flat-panel-airlift (FPA) cultivation system -- 12.1 Introduction -- 12.2 Subitec GmbH and the flat-panel-airlift system -- 12.3 From laboratory to pilot scale -- References -- 13 Case study: Microalgae production in the self-supported ProviAPT vertical flat-panel photobioreactor system -- 13.1 Introduction -- 13.2 ProviAPT technology and features -- 13.3 Prospects -- References -- 14 Case study: Biomass from open ponds -- 14.1 Introduction -- 14.2 Production process -- 14.2.1 Removal of coarse solids -- 14.2.2 Concentrating the biomass -- 14.2.3 Washing the biomass -- 14.2.4 Differences to closed photo-bioreactors -- 14.3 Energy consumption -- 14.4 Survey of process relevant data. , References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Berlin/Boston :Walter de Gruyter GmbH,
    Schlagwort(e): Microalgae -- Biotechnology. ; Microalgae -- Biotechnology -- Economic aspects. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (342 pages)
    Ausgabe: 1st ed.
    ISBN: 9783110298321
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- List of contributing authors -- 1 Introduction - Integration in microalgal biotechnology -- 1.1 Integration on the process level -- 1.2 Integration on the metabolic level -- 1.3 Integration into environmental conditions -- 1.4 Adaptation to cultural realities -- Integrated production processes -- 2 Products from microalgae: An overview -- 2.1 Microalgae: An introduction -- 2.2 Products -- 2.2.1 Use and production of algal biomass -- 2.2.2 Microalgae for human nutrition -- 2.2.2.1 Spirulina (Arthrospira) -- 2.2.2.2 Chlorella -- 2.2.2.3 Dunaliella salina -- 2.2.3 Microalgae for animal feed -- 2.2.4 Microalgae as natural fertilizer -- 2.2.5 Microalgae in cosmetics -- 2.2.6 Fine chemicals -- 2.2.6.1 PUFAs -- 2.2.6.2 Pigments -- Pigments as antioxidants -- Pigments as natural colorants -- 2.2.6.3 Polysaccharides -- 2.2.6.4 Recombinant proteins -- 2.2.6.5 Stable isotopes -- 2.2.7 Micro- and nanostructured particles -- 2.2.8 Bulk chemicals -- 2.2.9 Energy production from microalgae -- 2.2.9.1 Biodiesel -- 2.2.9.2 Bio-ethanol -- 2.2.9.3 Bio-hydrogen -- 2.2.9.4 Bio-gas -- 2.2.9.5 Biorefinery of microalgae -- 2.3 Conclusion -- References -- 3 Spirulina production in volcano lakes: From natural resources to human welfare -- 3.1 Introduction -- 3.2 Natural Spirulina lakes in Myanmar -- 3.3 Environmental parameters of Myanmar Spirulina lakes -- 3.4 Spirulina production from natural lakes -- 3.4.1 Harvesting -- 3.4.2 Washing and dewatering -- 3.4.3 Extrusion and sun drying -- 3.4.4 Lake-side enhancement ponds -- 3.5 Sustainable Spirulina production from volcanic crater lakes -- 3.6 Myanmar Spirulina products -- 3.7 Spirulina as biofertilizer -- 3.8 Spirulina as a biogas enhancer -- 3.9 Spirulina as a source of biofuel -- 3.10 Myanmar and German cooperation in microalgae biotechnology -- 3.11 Discussion -- 3.12 Conclusion -- Acknowledgments. , References -- 4 Case study of a temperature-controlled outdoor PBR system in Bremen -- Acknowledgments -- References -- 5 Algae for aquaculture and animal feeds -- 5.1 Introduction -- 5.2 Microalgae use in aquaculture hatcheries -- 5.2.1 Microalgal strains used in aquaculture hatcheries -- 5.2.2 Methods of microalgae cultivation for aquaculture -- 5.2.3 Role of microalgae in aquaculture hatcheries -- 5.2.3.1 Microalgae as a feed source for filter-feeding aquaculture species -- 5.2.3.2 Microalgae as a feed source for zooplanktonic live prey -- 5.2.3.3 Benthic microalgae as a feed source for gastropod mollusks and echinoderms -- 5.2.3.4 Addition of microalgae to fish larval rearing tanks -- 5.2.3.5 Use of microalgal concentrates in aquaculture hatcheries -- 5.3 Use of algae in formulated feeds for aquaculture species and terrestrial livestock -- 5.3.1 Algae as a supplement to enhance the nutritional value of formulated feeds -- 5.3.1.1 Vitamins and minerals -- 5.3.1.2 Pigments -- 5.3.1.3 Fatty acids -- 5.3.2 Algae as a potential feed ingredient: source of protein and energy -- 5.4 Outlook -- References -- 6 Algae as an approach to combat malnutrition in developing countries -- 6.1 Introduction -- 6.2 Algae in human food -- 6.3 Microalgae as a solution against malnutrition: meet Spirulina -- 6.4 Small-scale Spirulina production as a development tool -- 6.5 Spirulina as a business to combat malnutrition -- 6.6 Spirulina and its place in food aid and development policies -- 6.7 Evidence of Spirulina in malnutrition -- 6.8 Conclusion -- Acknowledgements -- References -- 7 Hydrogen production by natural and semiartificial systems -- 7.1 Biological hydrogen production of microorganisms -- 7.2 Photobiological hydrogen production by green algae -- 7.3 Photohydrogenproduction by cyanobacterial design cells -- 7.4 Photohydrogen production by a "biobattery". , 7.5 Photobioreactor design for hydrogen production -- 7.6 Photobioreactor geometry -- 7.7 Process control -- 7.8 Upscaling strategies -- References -- 8 The carotenoid astaxanthin from Haematococcus pluvialis -- 8.1 Introduction -- 8.2 Characteristics and biosynthesis -- 8.2.1 Chemical forms of astaxanthin -- 8.2.2 Astaxanthin biosynthesis -- 8.2.3 Function of astaxanthin -- 8.3 Haematococcus pluvialis -- 8.3.1 General characteristics -- 8.3.2 Factors responsible for ax accumulation -- 8.3.3 Industrial production of Haematococcus -- 8.4 Conclusions and outlook -- References -- 9 Screening and development of antiviral compound candidates from phototrophic microorganisms -- 9.1 Introduction -- 9.2 Supply of natural compounds from microalgae -- 9.3 Sterilizable photobioreactors -- 9.4 Antiviral agents from microalgae -- 9.5 Antiviral screening -- 9.5.1 Primary target of screening -- 9.5.2 Smart screening approach -- 9.5.3 Basic process sequence -- 9.5.4 Antiviral activity and immunostimulating effects of Arthrospira platensis -- 9.5.5 Characterization of novel antiviral spirulan-like compounds -- 9.6 Conclusion -- Acknowledgements -- References -- 10 Natural product drug discovery from microalgae -- 10.1 Introduction -- 10.1.1 Eukaryotic microalgae -- 10.1.1.1 Dinoflagellates -- 10.1.1.2 Diatoms -- 10.1.2 Cyanobacteria -- 10.1.2.1 Proteinase inhibitors -- 10.1.2.2 Cytotoxic compounds -- 10.1.2.3 Antiviral substances -- 10.1.2.4 Antimicrobial metabolites -- 10.1.2.5 Miscellaneous bioactivities -- 10.1.3 Three examples of current microalgal drug research projects -- 10.1.3.1 Dolastatins as leads for anti-cancer drugs -- 10.1.3.2 Cryptophycins as leads for anti-cancer drugs -- 10.1.3.3 Microcystins as targeted anti-cancer drugs -- 10.1.4 Outlook -- References -- Socio-economic and environmental considerations. , 11 Biorefining of microalgae: Production of high-value products, bulk chemicals and biofuels -- 11.1 Introduction -- 11.2. Structural biorefining approach of microalgae -- 11.2.1 Approach -- 11.2.2 Cell disruption, fractionation and mild cell disruption of organelles -- 11.2.3 Extraction and fractionation of high-value components -- 11.2.4 Economically feasible continuous biorefining concept -- 11.3. Conclusions -- References -- 12 Development of a microalgal pilot plant: A generic approach -- 12.1 Understanding the aims of the pilot plant -- 12.2 Pilot plant location and site selection -- 12.3 Develop the process flow diagram -- 12.4 Know what will be required to conduct experiments and measure the data -- 12.5 Sizing of the units -- 12.6 Plant layout -- 12.7 HAZOP study -- 12.8 Multidisciplinary review of the design -- 12.9 Tender for plant construction -- 12.10 Finalize the design -- References -- 13 Finding the bottleneck: A research strategy for improved biomass production -- 13.1 Introduction: What do we expect from cell engineering? -- 13.1.1 The need for domestication of microalgae -- 13.1.2 Limitation of traditional approaches to strain improvement -- 13.2 Algal domestication through chloroplast genetic engineering -- 13.2.1 Chloroplast engineering in Chlamydomonas: progress and challenges -- 13.2.2 A synthetic biology approach to chloroplast metabolic engineering -- 13.2.3 Mitigating the risks and concerns of GM algae -- 13.3 Algal domestication through nucleus genetic engineering -- 13.3.1 Improving light to biomass conversion by regulation of the pigment optical density of algal cultures -- 13.4 Models for predicting growth in photobioreactors -- 13.4.1 PAM fluorimetry: a keyhole to look into the photosynthetic machinery -- 13.4.2 Microalgae cultivation in photobioreactors: the fluctuating light effects. , 13.4.3 Standard model for growth under an exponential light gradient -- 13.5 Cells' response to changing environments: the example of nitrogen limitation -- Acknowledgments -- References -- 14 Trends driving microalgae-based fuels into economical production -- 14.1 Introduction -- 14.2 Leading trends -- 14.2.1 Microalgae biorefinery for food, feed, fertilizer and energy production -- 14.2.2 Biofuel production from low-cost microalgae grown in wastewater -- 14.2.3 Biogas upgrading with microalgae production for production of electricity -- 14.2.4 Hydrocarbon milking of modified Botryococcus microalgae strains -- 14.2.5 Hydrogen production combining direct and indirect microalgae biophotolysis -- 14.2.6 Direct ethanol production from autotrophic cyanobacteria -- 14.3 Production platforms -- 14.3.1 Ocean -- 14.3.2 Lakes -- 14.3.3 Raceways -- 14.3.4 Photobioreactors -- 14.3.5 Fermenters -- 14.4 Conclusions -- References -- 15 Microalgal production systems: Global impact of industry scale-up -- 15.1 Microalgal biotechnology -- 15.2 Global challenges, production and demand -- 15.2.1 Global fuel production and demand -- 15.2.2 Global food production and demand -- 15.2.3 Solar irradiance and areal requirement -- 15.2.4 Global challenges -- 15.3 Potential production and limitations -- 15.3.1 Solar energy and geographic location -- 15.3.2 Potential productivity -- 15.3.3 Land resources -- 15.3.4 Carbon management and associated costs -- 15.3.4.1 CO2 requirements -- 15.3.4.2 CO2 utilization and sequestration -- 15.3.4.3 CO2 delivery -- 15.3.5 Nutrient management and associated costs -- 15.3.5.1 Phosphorus -- 15.3.5.2 Nitrogen -- 15.3.5.3 Nutrient recycling -- 15.3.6 Water management and associated costs -- 15.4 Global impact of scale-up -- 15.4.1 Addressing world production -- 15.4.2 Economics of large-scale microalgal production systems. , 15.4.3 Techno-economic analysis of microalgal production systems.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Microalgae-Biotechnology. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (205 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319238081
    Serie: Advances in Biochemical Engineering/Biotechnology Series ; v.153
    DDC: 579.8
    Sprache: Englisch
    Anmerkung: Intro -- Status, Challenges, Goals -- Contents -- 286 Biology and Industrial Applications of Chlorella: Advances and Prospects -- Abstract -- 1 Introduction -- 2 Morphology, Ultrastructure, and Taxonomy -- 3 Growth Physiology -- 4 Mass Cultivation -- 4.1 Photoautotrophy -- 4.2 Mixotrophy -- 4.3 Heterotrophy -- 5 Potential Applications -- 5.1 Chlorella as Human Food and Animal Feed -- 5.2 Chlorella as a Source of Carotenoids -- 5.3 Chlorella for CO2 Biomitigation and Wastewater Bioremediation -- 5.4 Chlorella as Feedstock for Biofuels -- 5.5 Chlorella as Cell Factories for Recombinant Proteins -- 6 Conclusions and Future Prospects -- Acknowledgments -- References -- 331 Microalgae as a Source of Lutein: Chemistry, Biosynthesis, and Carotenogenesis -- Abstract -- 1 Introduction -- 2 Structure -- 3 Bioactivities and Impact on Health -- 4 Distribution -- 5 Mode of Cultivation -- 5.1 Photoautotrophic Cultivation -- 5.2 Heterotrophic Cultivation -- 6 Biosynthesis -- 6.1 Formation of Isopentenyl Diphosphate (IPP) -- 6.2 Formation of Geranylgeranyl Pyrophosphate (GGPP) -- 6.3 Biosynthesis and Desaturation of Phytoene -- 6.4 Cyclization of Lycopene -- 6.5 Hydroxylation -- 7 Regulation of Carotenogenesis -- 7.1 Intercommunication of Cellular Organelles and Retrograde Regulation of Photosynthetic Genes -- 7.2 Stimulation of Carotenogenesis by Oxidative Stress -- 7.2.1 Enhancement of Carotenoid Synthesis Induced by ROS -- 7.2.2 Expression Variation of Genes Encoding Enzymes Involved in Carotenoid Biosynthesis After Oxidative Stress Treatment -- 7.2.3 ROS Sensing Signaling Cascade Involved in Simulating Carotenogenesis -- 8 Conclusion and Future Perspectives -- 9 Acknowledgments -- References -- 287 Modelling of Microalgae Culture Systems with Applications to Control and Optimization -- Abstract -- 1 Introduction. , 2 Building Blocks of Microalgae Culture Models -- 3 Modeling of Intrinsic Biological Properties -- 3.1 Nutrient-Limited Growth and Decay -- 3.2 TAG Synthesis -- 3.3 Pigment Synthesis -- 3.4 Light-Limitation Effects -- 3.5 Temperature-Limitation Effect -- 4 Modeling of Physical Properties -- 4.1 Light Distribution -- 4.2 Microalgae Cell Trajectories -- 4.3 Temperature Variation -- 5 Towards Multiphysics Models of Microalgae Culture Systems -- 5.1 Chemostat Culture -- 5.2 Open Questions -- 6 Towards Model-Based Optimization and Control of Microalgae Culture Systems -- 6.1 Model-Based Operations Optimization -- 6.2 Monitoring and Control -- 7 Conclusions -- Acknowledgments -- References -- 328 Monitoring of Microalgal Processes -- Abstract -- 1 Introduction: Monitoring Needs for Cultivation of Microalgae -- 2 Process Variables in Microalgal Cultivations -- 3 Current Measuring Methods for Online Monitoring of Physicochemical Process Parameters -- 3.1 Light Intensity -- 3.2 Temperature -- 3.3 pH -- 3.4 Carbon Dioxide in Liquid and Gaseous Phases -- 3.5 Oxygen in Liquid and Gaseous Phases -- 3.6 Inorganic Nutrients -- 4 Current Measuring Methods for Online Monitoring of Biological Process Parameters -- 4.1 Biomass Concentration -- 4.2 Cell Count, Cell Morphology, and Contamination -- 4.3 Photosynthetic Efficiency and Quantum Yield -- 4.4 Case Study: Decrease in Quantum Yield Monitored by Online PAM Fluorometry -- 4.5 Biomass Composition -- 4.6 Culture Health Monitoring -- 4.7 Concentration of Extracellular Products -- 5 Novel Measuring Methods with Potential for Online Monitoring of Physicochemical Process Parameters -- 6 Novel Measuring Methods with Potential for Online Monitoring of Biological Process Parameters -- 6.1 2D Fluorometry -- 6.2 IR Spectroscopy -- 6.3 Flow Cytometry -- 6.4 Raman Spectroscopy -- 6.5 NMR Spectroscopy. , 6.6 Dielectric Spectroscopy -- 6.7 Monitoring of Selected Process Variables with Novel Measuring Methods -- 6.7.1 Biomass Concentration -- 6.7.2 Cell Count, Cell Morphology, Contamination -- 6.7.3 Case Study: In Situ Microscopy Measuring Cell Count and Cell Size Distribution -- 6.7.4 Biomass Composition: Pigment and Lipid Content -- 7 Software Sensors and Other Computer-Aided Monitoring Methods -- 8 Perspectives and Outlook for Online Measurements in Microalgal Cultivations -- References -- 327 Photobioreactors in Life Support Systems -- Abstract -- 1 Introduction -- 2 Potential of Microalgae with Respect to Remote Applications -- 3 Requirements, Opportunities, and Challenges of Photobioreactors for Space Missions -- 3.1 Illumination of Microalgae for Remote Applications -- 3.1.1 Accessory Pigments, Absorption, and Action Spectra of Chlamydomonas reinhardtii -- 3.1.2 Sensory Pigments in Chlamydomonas reinhardtii and Their Physiological Role -- 3.1.3 Phototaxis as Photomotile Behavior of This Alga -- 3.1.4 Circadian Clock Provides Rhythm for Phototactic Behavior -- 3.1.5 Blue Light not Only Induces Phototaxis2026 -- 3.1.6 Red Light -- 3.1.7 Geometrical Design Aspects of Photobioreactors for Remote Applications Regarding Light -- 3.1.8 Illumination Concepts and Designs for Biological Life Support Systems in Spaceflight -- 3.1.9 Consequences for Potential Mono- and Dichromatic Illumination of C. reinhardtii CC1690 for Remote/Spaceflight Applications -- 3.1.10 Ground-Based Experiments with Mono- and Dichromatic Illumination -- 3.2 Aeration of Microalgae for Remote Applications by Membranes -- 3.2.1 Mass Transfer Through Membranes in Photobioreactors -- 3.2.2 Membrane-Aerated Bioreactors -- 3.2.3 Membrane-Aerated Photobioreactors -- 3.2.4 Membrane-Aerated Photobioreactors for Space. , 3.2.5 Consequences for Potential Bubble-Free Membrane Aeration of Microalgae-Photobioreactors for Remote/Spaceflight Application -- 4 The ModuLES Reactor -- 5 Conclusions -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Schlagwort(e): Forschungsbericht
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (26 Seiten, 1,81 MB) , Illustrationen, Diagramme
    Sprache: Deutsch
    Anmerkung: Förderkennzeichen BMBF 02WIL1455B , Verbundnummer 01179639 , Weiteren Autor dem Berichtsblatt entnommen , Paralleltitel dem englischen Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassung: Deutsch, Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    [Karlsruhe] : [Karlsruher Institut für Technologie - Institut für Bio- und Lebensmitteltechnik, III: Bioverfahrenstechnik]
    Schlagwort(e): Forschungsbericht ; Biomineralisation ; Coccolith ; Calciumcarbonat ; Emiliania huxleyi
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (13 Seiten, 589,76 KB)
    Sprache: Deutsch
    Anmerkung: Förderkennzeichen BMBF 031A158A. - Verbund-Nummer 01134425 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Schlagwort(e): Forschungsbericht ; Glucose ; Lipide ; Isotopenmarkierung ; Mikroalgen ; Photoreaktor ; Brennstoffzelle ; Modul
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (20 Seiten, 1,92 MB) , Diagramme, Illustrationen
    Sprache: Deutsch
    Anmerkung: Förderkennzeichen BMBF 031B0028B. - Verbund-Nummer 01160948 , weiteren Autor dem Berichtsblatt entnommen. - Paralleltitel dem englischen Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassung: Deutsch, Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Schlagwort(e): Forschungsbericht ; Bioreaktor ; Biogasgewinnung ; Methan ; Kohlendioxid ; Wasser ; Algen ; Photosynthese
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (50 Seiten, 997 KB) , Illustrationen, Diagramme
    Sprache: Deutsch
    Anmerkung: Förderkennzeichen BMBF 16SV3873. - Verbund-Nummer W3ALG101 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Karlsruhe : Institut für Bio- und Lebensmitteltechnik, Bereich III, Bioverfahrenstechnik, Karlsruher Institut für Technologie (KIT)
    Schlagwort(e): Forschungsbericht
    Materialart: Online-Ressource
    Seiten: Online-Ressource (15 S., 973 KB) , Ill., graph. Darst.
    Sprache: Deutsch
    Anmerkung: Förderkennzeichen BMBF 0313852B. - Verbund-Nr. 01051114 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Auch als gedr. Ausg. vorhanden , Systemvoraussetzungen: Acrobat reader.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Schlagwort(e): Forschungsbericht ; Bioreaktor ; Mikroalgen ; Glykolate ; Vergärung ; Methan
    Materialart: Online-Ressource
    Seiten: Online-Ressource (31 S., 1,58 MB) , Ill., graph. Darst.
    Sprache: Deutsch
    Anmerkung: Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Förderkennzeichen BMBF 03V0003. - Verbund-Nr. 01081665. - Engl. Berichtsblatt u.d.T.: Validation of an innovative process for the production of biomethane in a two-compartment-biofilm reactor : project part C: development, construction and validation of the reactor , Systemvoraussetzungen: Acrobat reader. , Mit dt. u. engl. Zsfassung
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Schlagwort(e): Forschungsbericht ; Bioreaktor ; Wasserstofferzeugung ; Algen
    Materialart: Online-Ressource
    Seiten: Online-Ressource (20 S., 1,34 MB) , Ill., graph. Darst.
    Sprache: Deutsch
    Anmerkung: Förderkennzeichen BMBF 03SF0361C. - Verbund-Nr. 01071253 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Systemvoraussetzungen: Acrobat reader.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...