GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Climate, American Meteorological Society, Vol. 36, No. 11 ( 2023-06-01), p. 3849-3866
    Abstract: Simulating and reproducing the past Atlantic meridional overturning circulation (AMOC) with comprehensive climate models are essential to understanding past climate changes as well as to testing the ability of the models in simulating different climates. At the Last Glacial Maximum (LGM), reconstructions show a shoaling of the AMOC compared to modern climate. However, almost all state-of-the-art climate models simulate a deeper LGM AMOC. Here, it is shown that this paleodata–model discrepancy is partly related to the climate model biases in modern sea surface temperatures (SST) over the Southern Ocean (70°–45°S). Analysis of model outputs from three phases of the Paleoclimate Model Intercomparison Project shows that models with warm Southern Ocean SST biases tend to simulate a deepening of the LGM AMOC, while the opposite is observed in models with cold SST biases. As a result, a positive correlation of 0.41 is found between SST biases and LGM AMOC depth anomalies. Using sensitivity experiments with a climate model, we show, as an example, that changes in parameters associated with the fraction of cloud thermodynamic phase in a climate model reduce the biases in the warm SST over the modern Southern Ocean. The less biased versions of the model then reproduce a colder Southern Ocean at the LGM, which increases formation of Antarctic Bottom Water and causes shoaling of the LGM AMOC, without affecting the LGM climate in other regions. The results highlight the importance of sea surface conditions and clouds over the Southern Ocean in simulating past and future global climates. Significance Statement To test the ability of comprehensive climate models, simulations of the Last Glacial Maximum (LGM) have been conducted. However, most models simulated a deeper Atlantic meridional overturning circulation (AMOC) in the LGM, which contradicts paleodata suggesting a shallower AMOC. Here, using multimodel analysis and sensitivity experiments with a climate model, we show that this paleodata–model discrepancy is partly related to model biases in the modern Southern Ocean. Improvements in Southern Ocean surface temperatures and clouds reproduce a colder climate over the Southern Ocean at the LGM, which causes an intense shoaling of the AMOC due to increased formation of Antarctic Bottom Water. These results demonstrate the important effect of model biases over the Southern Ocean on simulating past climates.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2023-01-18)
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 13, No. 5 ( 2020-05-19), p. 2337-2354
    Abstract: Abstract. Recently, major progress has been made in the simulation of the ocean dynamics of the Mediterranean using atmospheric and oceanic models with high spatial resolution. High resolution is essential to accurately capture the synoptic variability required to initiate intermediate- and deep-water formation, the engine of the Mediterranean thermohaline circulation (MTC). In paleoclimate studies, one major problem with the simulation of regional climate changes is that boundary conditions are not available from observations or data reconstruction to drive high-resolution regional models. One consistent way to advance paleoclimate modelling is to use a comprehensive global-to-regional approach. However, this approach needs long-term integration to reach equilibrium (hundreds of years), implying enormous computational resources. To tackle this issue, a sequential architecture of a global–regional modelling platform has been developed for the first time and is described in detail in this paper. First of all, the platform is validated for the historical period. It is then used to investigate the climate and in particular, the oceanic circulation, during the Early Holocene. This period was characterised by a large reorganisation of the MTC that strongly affected oxygen supply to the intermediate and deep waters, which ultimately led to an anoxic crisis (called sapropel). Beyond the case study shown here, this platform may be applied to a large number of paleoclimate contexts from the Quaternary to the Pliocene, as long as regional tectonics remain mostly unchanged. For example, the climate responses of the Mediterranean basin during the last interglacial period (LIG), the Last Glacial Maximum (LGM) and the Late Pliocene all present interesting scientific challenges which may be addressed using this numerical platform.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Climate of the Past, Copernicus GmbH, Vol. 17, No. 3 ( 2021-05-20), p. 1065-1089
    Abstract: Abstract. The Last Glacial Maximum (LGM, ∼ 21 000 years ago) has been a major focus for evaluating how well state-of-the-art climate models simulate climate changes as large as those expected in the future using paleoclimate reconstructions. A new generation of climate models has been used to generate LGM simulations as part of the Paleoclimate Modelling Intercomparison Project (PMIP) contribution to the Coupled Model Intercomparison Project (CMIP). Here, we provide a preliminary analysis and evaluation of the results of these LGM experiments (PMIP4, most of which are PMIP4-CMIP6) and compare them with the previous generation of simulations (PMIP3, most of which are PMIP3-CMIP5). We show that the global averages of the PMIP4 simulations span a larger range in terms of mean annual surface air temperature and mean annual precipitation compared to the PMIP3-CMIP5 simulations, with some PMIP4 simulations reaching a globally colder and drier state. However, the multi-model global cooling average is similar for the PMIP4 and PMIP3 ensembles, while the multi-model PMIP4 mean annual precipitation average is drier than the PMIP3 one. There are important differences in both atmospheric and oceanic circulations between the two sets of experiments, with the northern and southern jet streams being more poleward and the changes in the Atlantic Meridional Overturning Circulation being less pronounced in the PMIP4-CMIP6 simulations than in the PMIP3-CMIP5 simulations. Changes in simulated precipitation patterns are influenced by both temperature and circulation changes. Differences in simulated climate between individual models remain large. Therefore, although there are differences in the average behaviour across the two ensembles, the new simulation results are not fundamentally different from the PMIP3-CMIP5 results. Evaluation of large-scale climate features, such as land–sea contrast and polar amplification, confirms that the models capture these well and within the uncertainty of the paleoclimate reconstructions. Nevertheless, regional climate changes are less well simulated: the models underestimate extratropical cooling, particularly in winter, and precipitation changes. These results point to the utility of using paleoclimate simulations to understand the mechanisms of climate change and evaluate model performance.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    OpenEdition ; 2017
    In:  Quaternaire , No. vol. 28/2 ( 2017-05-29), p. 195-200
    In: Quaternaire, OpenEdition, , No. vol. 28/2 ( 2017-05-29), p. 195-200
    Type of Medium: Online Resource
    ISSN: 1142-2904 , 1965-0795
    URL: Issue
    RVK:
    Language: Unknown
    Publisher: OpenEdition
    Publication Date: 2017
    detail.hit.zdb_id: 2458675-4
    SSG: 13
    SSG: 6,11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-05-19)
    Abstract: Between the Last Glacial Maximum and the mid-Holocene, the Mediterranean Sea experienced major hydrological changes. The deposition of the last sapropel, S1, during the Early Holocene is a consequence of these changes. In order to cause anoxia in the Eastern Mediterranean Sea (EMS) bottom water, a long preconditioning period of a few thousand years would need to occur throughout the deglaciation prior to S1. It is generally believed that this freshwater was of North Atlantic origin, later supplemented by the African Humid period (AHP). Here, we investigate another potentially important source of freshwater to the EMS: the Fennoscandian ice sheet (FIS) meltwater, running into the Caspian and Black Seas. A few scenarios of continental hydrologic perturbation have been developed to drive a high-resolution Mediterranean Sea general circulation model. We demonstrate that, during the last deglaciation, FIS meltwater flowing into the Black Sea reduced surface salinity and ventilation over the main convection areas in the EMS. By including continental hydrological changes, a more consistent framework is produced to characterize the hydrology of the Mediterranean Sea during the last deglaciation and the Early Holocene.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...