GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), Vol. 11, No. 4 ( 2019-04), p. 998-1038
    Abstract: An updated version of the Max Planck Institute for Meteorology Earth System Model (MPI‐ESM1.2) is presented The model includes both code corrections and parameterization improvements Despite this, the model maintains an equilibrium climate sensitivity, which rises with warming
    Type of Medium: Online Resource
    ISSN: 1942-2466 , 1942-2466
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 2462132-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1996
    In:  Journal of Geophysical Research: Oceans Vol. 101, No. C10 ( 1996-10-15), p. 22563-22575
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 101, No. C10 ( 1996-10-15), p. 22563-22575
    Abstract: The flow which constitutes the conveyor belt in the Hamburg large‐scale geostrophic ocean general circulation model has been investigated with the help of a particle tracking method. In the region of North Atlantic Deep Water formation a thousand trajectories were calculated backward in time to the point where they upwell from the deep ocean. Both the three‐dimensional velocity field and convective overturning have been used for this calculation. Together, the trajectories form a representative picture of the upper branch of the conveyor belt in the model. In the Atlantic Ocean the path and strength (17 Sv) of the conveyor belt in the model are found to be consistent with observations. All trajectories enter the South Atlantic via Drake Passage, as the model does not simulate any Agulhas leakage. Large changes in water masses occur in the South Atlantic midlatitudes and subtropical North Atlantic. Along its path in the Atlantic the water in the conveyor belt is transformed from Antarctic Intermediate Water to Central North Atlantic Water. On the average the timescale on which the water mass characteristics are approximately conserved is only a few years compared to the timescale of 70 years for the conveyor belt to cross the Atlantic. The ventilation of thermocline waters in the South Atlantic midlatitudes is overestimated in the model due to too much convective deepening of the winter mixed layer. As a result the fraction of the conveyor belt water flowing in the surface layer is also overestimated, along with integrated effects of atmospheric forcing. The abnormally strong water mass transformation in the South Atlantic might be related to the absence of Agulhas leakage in the model.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1995
    In:  Journal of Geophysical Research: Oceans Vol. 100, No. C6 ( 1995-06-15), p. 10693-10725
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 100, No. C6 ( 1995-06-15), p. 10693-10725
    Abstract: Recent investigations have considered whether it is possible to achieve early detection of greenhouse‐gas‐induced climate change by observing changes in ocean variables. In this study we use model data to assess some of the uncertainties involved in estimating when we could expect to detect ocean greenhouse warming signals. We distinguish between detection periods and detection times. As defined here, detection period is the length of a climate time series required in order to detect, at some prescribed significance level, a given linear trend in the presence of the natural climate variability. Detection period is defined in model years and is independent of reference time and the real time evolution of the signal. Detection time is computed for an actual time‐evolving signal from a greenhouse warming experiment and depends on the experiment's start date. Two sources of uncertainty are considered: those associated with the level of natural variability or noise, and those associated with the time‐evolving signals. We analyze the ocean signal and noise for spatially averaged ocean circulation indices such as heat and fresh water fluxes, rate of deep water formation, salinity, temperature, transport of mass, and ice volume. The signals for these quantities are taken from recent time‐dependent greenhouse warming experiments performed by the Max Planck Institute for Meteorology in Hamburg with a coupled ocean‐atmosphere general circulation model. The time‐dependent greenhouse gas increase in these experiments was specified in accordance with scenario A of the Intergovernmental Panel on Climate Change. The natural variability noise is derived from a 300‐year control run performed with the same coupled atmosphere‐ocean model and from two long ( 〉 3000 years) stochastic forcing experiments in which an uncoupled ocean model was forced by white noise surface flux variations. In the first experiment the stochastic forcing was restricted to the fresh water fluxes, while in the second experiment the ocean model was additionally forced by variations in wind stress and heat fluxes. The mean states and ocean variability are very different in the three natural variability integrations. A suite of greenhouse warming simulations with identical forcing but different initial conditions reveals that the signal estimated from these experiments may evolve in noticeably different ways for some ocean variables. The combined signal and noise uncertainties translate into large uncertainties in estimates of detection time. Nevertheless, we find that ocean variables that are highly sensitive indicators of surface conditions, such as convective overturning in the North Atlantic, have shorter signal detection times (35–65 years) than deep‐ocean indicators (≥100 years). We investigate also whether the use of a multivariate detection vector increases the probability of early detection. We find that this can yield detection times of 35–60 years (relative to a 1985 reference date) if signal and noise are projected onto a common “fingerprint” which describes the expected signal direction. Optimization of the signal‐to‐noise ratio by (spatial) rotation of the fingerprint in the direction of low‐noise components of the stochastic forcing experiments noticeably reduces the detection time (to 10–45 years). However, rotation in space alone does not guarantee an improvement of the signal‐to‐noise ratio for a time‐dependent signal. This requires an “optimal fingerprint” strategy in which the detection pattern (fingerprint) is rotated in both space and time.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1995
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 1995
    In:  Journal of Physical Oceanography Vol. 25, No. 9 ( 1995-09), p. 2046-2064
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 25, No. 9 ( 1995-09), p. 2046-2064
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1995
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1997
    In:  Paleoceanography Vol. 12, No. 3 ( 1997-06), p. 429-441
    In: Paleoceanography, American Geophysical Union (AGU), Vol. 12, No. 3 ( 1997-06), p. 429-441
    Abstract: Prior ocean modeling work suggested that an open central American isthmus would cause a collapse of the North Atlantic thermohaline circulation because of free exchange of low salinity water between the Atlantic and the Pacific. Geological data provide some support for this response, but the data also indicate that some North Atlantic Deep Water formation occurred before final closure of the isthmus. We previously postulated that this “early switch on” could reflect a more limited exchange of Atlantic waters with the Pacific. In this study we discuss model sensitivity experiments testing that hypothesis and interpret the response in terms of shifts between multiple steady states of the model. Two simulations are conducted with a version of the Hamburg large‐scale geostrophic ocean model that is coupled to an atmospheric energy balance model. Constrictions of throughflow through the central American isthmus is mimicked by locally changing the frictional drag coefficient in the ocean model. Results indicate that modest levels of throughflow can maintain some level of thermohaline circulation. These results support the conjecture in our earlier study. However, the overturning cell is about 300 m shallower than in the control run, with deep water production nearly eliminated in the Labrador Sea. These latter responses should be testable with marine data.
    Type of Medium: Online Resource
    ISSN: 0883-8305 , 1944-9186
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1997
    detail.hit.zdb_id: 637876-6
    detail.hit.zdb_id: 2015231-0
    detail.hit.zdb_id: 2916554-4
    SSG: 16,13
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1994
    In:  Journal of Geophysical Research: Oceans Vol. 99, No. C11 ( 1994-11-15), p. 22633-22644
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 99, No. C11 ( 1994-11-15), p. 22633-22644
    Abstract: When driven under “mixed boundary conditions”, coarse resolution ocean general circulation models (OGCMs) generally show a high sensitivity of the present‐day thermohaline circulation against perturbations. We will show that an alternative formulation of the boundary condition for temperature, a mixture of prescribed heat fluxes and additional restoring of the sea surface temperature to a climatological boundary temperature with a longer time constant, drastically alters the stability of the modes of the thermohaline circulation. The results from simulations with the Hamburg large‐scale geostrophic OGCM indicate that the stability of the mode of the thermohaline circulation with formation of North Atlantic deepwater increases, if the damping of sea surface temperature anomalies is reduced, whereas the opposite is true for the mode without North Atlantic deep water formation. It turns out that the formulation of the temperature boundary condition also affects the variability of the model.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1994
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2000
    In:  Geophysical Research Letters Vol. 27, No. 5 ( 2000-03), p. 723-726
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 27, No. 5 ( 2000-03), p. 723-726
    Abstract: New simulation results obtained with the Hamburg Atmosphere General Circulation Model ECHAM‐4 under maximum glacial boundary (LGM) conditions confirm the paleotemperatures on Greenland determined by borehole thermometry. The disagreement between δ 18 O isotope based temperatures and the borehole temperatures of the LGM is not only reproduced by the model, but the simulation results provide a plausible explanation: Paleotemperatures inferred from δ 18 O measurements in ice cores are biased by a substantially increased seasonality of precipitation over Greenland during the LGM. During the glacial winter a much more zonal circulation prevents the effective transport of moisture to the Greenland ice sheet, and therefore reduces the contribution of isotopically strongly depleted winter snow to the annual mean isotope signal.
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2000
    In:  Journal of Geophysical Research: Atmospheres Vol. 105, No. D8 ( 2000-04-27), p. 10161-10167
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 105, No. D8 ( 2000-04-27), p. 10161-10167
    Abstract: The Hamburg atmosphere general circulation model ECHAM‐4 is used to investigate how a meltwater event in the North Atlantic might alter the signal of stable water isotopes (H 2 18 O, HDO) in precipitation. Our results show that such a meltwater event will cause significant changes in the isotopic composition of the precipitation over many parts of the Northern Hemisphere, but also in the tropical Atlantic region. Model simulations suggest that for such a scenario isotope anomalies are not only related to temperature changes, but also to changes in the seasonality of precipitation or the precipitation amount. A changed isotopic composition of evaporating ocean surface waters (caused by a massive meltwater input into the North Atlantic) causes temperature‐independent isotope anomalies, too. Changes of the deuterium excess are even more affected by the imposed oceanic isotope anomaly due to the nonlinearity of the evaporation process.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1990
    In:  Nature Vol. 345, No. 6276 ( 1990-6), p. 589-593
    In: Nature, Springer Science and Business Media LLC, Vol. 345, No. 6276 ( 1990-6), p. 589-593
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1990
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2009
    In:  Climate Dynamics Vol. 32, No. 7-8 ( 2009-6), p. 1119-1138
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 32, No. 7-8 ( 2009-6), p. 1119-1138
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2009
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...