GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Bulletin of the American Meteorological Society Vol. 102, No. 1 ( 2021-01), p. E1-E19
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 102, No. 1 ( 2021-01), p. E1-E19
    Abstract: Monsoon rainfall has profound economic and societal impacts for more than two-thirds of the global population. Here we provide a review on past monsoon changes and their primary drivers, the projected future changes, and key physical processes, and discuss challenges of the present and future modeling and outlooks. Continued global warming and urbanization over the past century has already caused a significant rise in the intensity and frequency of extreme rainfall events in all monsoon regions (high confidence). Observed changes in the mean monsoon rainfall vary by region with significant decadal variations. Northern Hemisphere land monsoon rainfall as a whole declined from 1950 to 1980 and rebounded after the 1980s, due to the competing influences of internal climate variability and radiative forcing from greenhouse gases and aerosol forcing (high confidence); however, it remains a challenge to quantify their relative contributions. The CMIP6 models simulate better global monsoon intensity and precipitation over CMIP5 models, but common biases and large intermodal spreads persist. Nevertheless, there is high confidence that the frequency and intensity of monsoon extreme rainfall events will increase, alongside an increasing risk of drought over some regions. Also, land monsoon rainfall will increase in South Asia and East Asia (high confidence) and northern Africa (medium confidence), decrease in North America, and be unchanged in the Southern Hemisphere. Over the Asian–Australian monsoon region, the rainfall variability is projected to increase on daily to decadal scales. The rainy season will likely be lengthened in the Northern Hemisphere due to late retreat (especially over East Asia), but shortened in the Southern Hemisphere due to delayed onset.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 1996
    In:  Journal of the Atmospheric Sciences Vol. 53, No. 12 ( 1996-06), p. 1751-1758
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 53, No. 12 ( 1996-06), p. 1751-1758
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1996
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 10 ( 2009-05-15), p. 2526-2540
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 10 ( 2009-05-15), p. 2526-2540
    Abstract: The impact of stochastic intraseasonal variability on the onset of the 1997/98 El Niño was examined using a large ensemble of forecasts starting on 1 December 1996, produced using the Australian Bureau of Meteorology Predictive Ocean Atmosphere Model for Australia (POAMA) seasonal forecast coupled model. This coupled model has a reasonable simulation of El Niño and the Madden–Julian oscillation, so it provides an ideal framework for investigating the interaction between the MJO and El Niño. The experiment was designed so that the ensemble spread was simply a result of internal stochastic variability that is generated during the forecast. For the initial conditions used here, all forecasts led to warm El Niño–type conditions with the amplitude of the warming varying from 0.5° to 2.7°C in the Niño-3.4 region. All forecasts developed an MJO event during the first 4 months, indicating that perhaps the background state favored MJO development. However, the details of the MJOs that developed during December 1996–March 1997 had a significant impact on the subsequent strength of the El Niño event. In particular, the forecasts with the initial MJOs that extended farther into the central Pacific, on average, led to a stronger El Niño, with the westerly winds in the western Pacific associated with the MJO leading the development of SST and thermocline anomalies in the central and eastern Pacific. These results imply a limit to the accuracy with which the strength of El Niño can be predicted because the details of individual MJO events matter. To represent realistic uncertainty, coupled models should be able to represent the MJO, including its propagation into the central Pacific so that forecasts produce sufficient ensemble spread.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Journal of Climate Vol. 25, No. 18 ( 2012-09-15), p. 6318-6329
    In: Journal of Climate, American Meteorological Society, Vol. 25, No. 18 ( 2012-09-15), p. 6318-6329
    Abstract: Recent research has shown that the climatic impact from El Niño–Southern Oscillation (ENSO) on middle latitudes west of the western Pacific (e.g., southeast Australia) during austral spring (September–November) is conducted via the tropical Indian Ocean (TIO). However, it is not clear whether this impact pathway is symmetric about the positive and negative phases of ENSO and the Indian Ocean dipole (IOD). It is shown that a strong asymmetry does exist. For ENSO, only the impact from El Niño is conducted through the TIO pathway; the impact from La Niña is delivered through the Pacific–South America pattern. For the IOD, a greater convection anomaly and wave train response occurs during positive IOD (pIOD) events than during negative IOD (nIOD) events. This “impact asymmetry” is consistent with the positive skewness of the IOD, principally due to a negative skewness of sea surface temperature (SST) anomalies in the east IOD (IODE) pole. In the IODE region, convection anomalies are more sensitive to a per unit change of cold SST anomalies than to the same unit change of warm SST anomalies. This study shows that the IOD skewness occurs despite the greater damping, rather than due to a breakdown of this damping as suggested by previous studies. This IOD impact asymmetry provides an explanation for much of the reduction in spring rainfall over southeast Australia during the 2000s. Key to this rainfall reduction is the increased occurrences of pIOD events, more so than the lack of nIOD events.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 1990
    In:  Journal of the Atmospheric Sciences Vol. 47, No. 24 ( 1990-12), p. 2909-2924
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 47, No. 24 ( 1990-12), p. 2909-2924
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1990
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Journal of Climate Vol. 24, No. 14 ( 2011-07-15), p. 3734-3747
    In: Journal of Climate, American Meteorological Society, Vol. 24, No. 14 ( 2011-07-15), p. 3734-3747
    Abstract: This study investigates the impact of Indian Ocean sea surface temperature (SST) anomalies on the atmospheric circulation of the Southern Hemisphere during El Niño events, with a focus on Australian climate. During El Niño episodes, the tropical Indian Ocean exhibits two types of SST response: a uniform “basinwide warming” and a dipole mode—the Indian Ocean dipole (IOD). While the impacts of the IOD on climate have been extensively studied, the effects of the basinwide warming, particularly in the Southern Hemisphere, have received less attention. The interannual basinwide warming response has important implications for Southern Hemisphere atmospheric circulation because 1) it accounts for a greater portion of the Indian Ocean monthly SST variance than the IOD pattern and 2) its maximum amplitude occurs during austral summer to early autumn, when large parts of Australia, South America, and Africa experience their monsoon. Using observations and numerical experiments with an atmospheric general circulation model forced with historical SST from 1949 to 2005 over different tropical domains, the authors show that the basinwide warming leads to a Gill–Matsuno-type response that reinforces the anomalies caused by changes in the Pacific as part of El Niño. In particular, the basinwide warming drives strong subsidence over Australia, prolonging the dry conditions during January–March, when El Niño–related SST starts to decay. In addition to the anomalous circulation in the tropics, the basinwide warming excites a pair of barotropic anomalies in the Indian Ocean extratropics that induces an anomalous anticyclone in the Great Australian Bight.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2000
    In:  Monthly Weather Review Vol. 128, No. 7 ( 2000-07), p. 2528-2543
    In: Monthly Weather Review, American Meteorological Society, Vol. 128, No. 7 ( 2000-07), p. 2528-2543
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2000
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 1989
    In:  Monthly Weather Review Vol. 117, No. 7 ( 1989-07), p. 1458-1470
    In: Monthly Weather Review, American Meteorological Society, Vol. 117, No. 7 ( 1989-07), p. 1458-1470
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1989
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 1997
    In:  Journal of the Atmospheric Sciences Vol. 54, No. 6 ( 1997-03), p. 741-752
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 54, No. 6 ( 1997-03), p. 741-752
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1997
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 1998
    In:  Journal of the Atmospheric Sciences Vol. 55, No. 23 ( 1998-12), p. 3471-3492
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 55, No. 23 ( 1998-12), p. 3471-3492
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1998
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...