GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Geology, Geological Society of America, Vol. 27, No. 10 ( 1999), p. 887-
    Materialart: Online-Ressource
    ISSN: 0091-7613
    Sprache: Englisch
    Verlag: Geological Society of America
    Publikationsdatum: 1999
    ZDB Id: 184929-3
    ZDB Id: 2041152-2
    SSG: 13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Elsevier BV ; 1990
    In:  Tectonophysics Vol. 180, No. 1 ( 1990-8), p. 37-47
    In: Tectonophysics, Elsevier BV, Vol. 180, No. 1 ( 1990-8), p. 37-47
    Materialart: Online-Ressource
    ISSN: 0040-1951
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 1990
    ZDB Id: 2012830-7
    ZDB Id: 204243-5
    SSG: 16,13
    SSG: 13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Elsevier BV ; 2007
    In:  Tectonophysics Vol. 434, No. 1-4 ( 2007-4), p. 55-69
    In: Tectonophysics, Elsevier BV, Vol. 434, No. 1-4 ( 2007-4), p. 55-69
    Materialart: Online-Ressource
    ISSN: 0040-1951
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2007
    ZDB Id: 2012830-7
    ZDB Id: 204243-5
    SSG: 16,13
    SSG: 13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Geology, Geological Society of America, Vol. 26, No. 3 ( 1998), p. 199-
    Materialart: Online-Ressource
    ISSN: 0091-7613
    Sprache: Englisch
    Verlag: Geological Society of America
    Publikationsdatum: 1998
    ZDB Id: 184929-3
    ZDB Id: 2041152-2
    SSG: 13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 77, No. 18 ( 1996-04-30), p. 173-176
    Kurzfassung: The Whittier Narrows earthquake of 1987 and the Northridge earthquake of 1991 highlighted the earthquake hazards associated with buried faults in the Los Angeles region. A more thorough knowledge of the subsurface structure of southern California is needed to reveal these and other buried faults and to aid us in understanding how the earthquake‐producing machinery works in this region.
    Materialart: Online-Ressource
    ISSN: 0096-3941 , 2324-9250
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 1996
    ZDB Id: 24845-9
    ZDB Id: 2118760-5
    ZDB Id: 240154-X
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 1998
    In:  Journal of Geophysical Research: Solid Earth Vol. 103, No. B12 ( 1998-12-10), p. 29743-29757
    In: Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), Vol. 103, No. B12 ( 1998-12-10), p. 29743-29757
    Kurzfassung: We develop a rapid nonlinear travel time tomography method that simultaneously inverts refraction and reflection travel times on a regular velocity grid. For travel time and ray path calculations, we apply a wave front method employing graph theory. The first‐arrival refraction travel times are calculated on the basis of cell velocities, and the later refraction and reflection travel times are computed using both cell velocities and given interfaces. We solve a regularized nonlinear inverse problem. A Laplacian operator is applied to regularize the model parameters (cell slownesses and reflector geometry) so that the inverse problem is valid for a continuum. The travel times are also regularized such that we invert travel time curves rather than travel time points. A conjugate gradient method is applied to minimize the nonlinear objective function. After obtaining a solution, we perform nonlinear Monte Carlo inversions for uncertainty analysis and compute the posterior model covariance. In numerical experiments, we demonstrate that combining the first arrival refraction travel times with later reflection travel times can better reconstruct the velocity field as well as the reflector geometry. This combination is particularly important for modeling crustal structures where large velocity variations occur in the upper crust. We apply this approach to model the crustal structure of the California Borderland using ocean bottom seismometer and land data collected during the Los Angeles Region Seismic Experiment along two marine survey lines. Details of our image include a high‐velocity zone under the Catalina Ridge, but a smooth gradient zone between Catalina Ridge and San Clemente Ridge. The Moho depth is about 22 km with lateral variations.
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 1998
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 1995
    In:  Journal of Geophysical Research: Solid Earth Vol. 100, No. B4 ( 1995-04-10), p. 6295-6312
    In: Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), Vol. 100, No. B4 ( 1995-04-10), p. 6295-6312
    Kurzfassung: We model the three‐dimensional (3‐D) crustal deformation in a deep pull‐apart basin as a result of relative plate motion along a transform system and compare the results to the tectonics of the Dead Sea Basin. The brittle upper crust is modeled by a boundary element technique as an elastic block, broken by two en echelon semi‐infinite vertical faults. The deformation is caused by a horizontal displacement that is imposed everywhere at the bottom of the block except in a stress‐free “shear zone” in the vicinity of the fault zone. The bottom displacement represents the regional relative plate motion. Results show that the basin deformation depends critically on the width of the shear zone and on the amount of overlap between basin‐bounding faults. As the width of the shear zone increases, the depth of the basin decreases, the rotation around a vertical axis near the fault tips decreases, and the basin shape (the distribution of subsidence normalized by the maximum subsidence) becomes broader. In contrast, two‐dimensional plane stress modeling predicts a basin shape that is independent of the width of the shear zone. Our models also predict full‐graben profiles within the overlapped region between bounding faults and half‐graben shapes elsewhere. Increasing overlap also decreases uplift near the fault tips and rotation of blocks within the basin. We suggest that the observed structure of the Dead Sea Basin can be described by a 3‐D model having a large overlap (more than 30 km) that probably increased as the basin evolved as a result of a stable shear motion that was distributed laterally over 20 to 40 km.
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 1995
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2005
    In:  Journal of Geophysical Research Vol. 110, No. B6 ( 2005)
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 110, No. B6 ( 2005)
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2005
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 1987
    In:  Journal of Geophysical Research: Solid Earth Vol. 92, No. B13 ( 1987-12-10), p. 13687-13707
    In: Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), Vol. 92, No. B13 ( 1987-12-10), p. 13687-13707
    Kurzfassung: Coincident multichannel seismic reflection and refraction data acquired during a wide‐aperture two‐ship experiment provide evidence for a complex crust‐mantle (C‐M) transition under Oahu, Hawaii. Several large‐aperture common depth point lines and three expanding spread profiles suggest the existence of an anomalously thick (3–6 km) C‐M transition zone underneath the volcanic ridge which extends for distances of 100 km to the north and south from the center of Oahu. The anomalous C‐M transition may represent a plutonic complex which intruded into the upper mantle and the lower crust in a 200‐km‐wide area centered at Oahu. The existence of such a large volume of intrusions near the base of the crust implies that the surficial expression of volcanism constitutes only a small fraction of the amount of melt generated at depth under the Hawaiian Islands. This interpretation is in accord with previous petrological models which predict trapping and accumulation of upwelling magma at and below the Moho. We have constructed a model which suggests that the interaction between the upwelling magma and the lithospheric flexural stress field may modulate the characteristic eruption history of Hawaiian volcanoes. In particular, the model for the plane stress field which accompanies the flexure of the oceanic crust around island chains indicates that the stress field under individual volcanoes varies considerably with its position relative to the tip of the chain. As a Hawaiian‐sized volcano develops, the magnitude of deviatoric compressive stresses under it is probably sufficient to block the conduits of the upwelling magma within the oceanic crust and to terminate eruptions. Further upwelling magma is predicted by the models to be ponded at the base of the crust. Resumption of posterosional volcanism seems to occur at a constant distance behind the center of active shield volcanism, as the horizontal compressive stresses along the axis of the chain are released. Observed orientations of dikes of this volcanic phase agree with the directions of the maximum calculated stresses. Our model implies that magma upwells over a 300‐km‐wide zone and that the oceanic plate may not be fractured under the islands.
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 1987
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2000
    In:  Eos, Transactions American Geophysical Union Vol. 81, No. 46 ( 2000-11-14), p. 545-552
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 81, No. 46 ( 2000-11-14), p. 545-552
    Kurzfassung: In the past decade, Earth scientists have recognized the seismic hazards that crustal faults and sedimentary basins pose to Seattle, Washington (Figure 1). In 1998, the US. Geological Survey and its collaborators initiated a series of urban seismic studies of the upper crust to better map seismogenic structures and sedimentary basins in the Puget Lowland. These studies are called the Seismic Hazard Investigations of Puget Sound (SHIPS). In March 1998, we conducted our first SHIPS study, an investigation of the upper crustal structure of the Puget Lowland, using marine airgun sources and land recorders [ Fisher et al. , 1999].The study was nicknamed Wet SHIPS. In September 1999, we obtained a seismic refraction line to study the upper crustal structure in the Seattle area in a land‐based study nicknamed Dry SHIPS [ Brocher et al. , 2000] (Figure 1). In March 2000, we recorded the demolition of the Seattle Kingdome sports stadium using a dense array of seismic recorders for a detailed site response study; this study was nicknamed Kingdome SHIPS (Figure 1).
    Materialart: Online-Ressource
    ISSN: 0096-3941 , 2324-9250
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2000
    ZDB Id: 24845-9
    ZDB Id: 2118760-5
    ZDB Id: 240154-X
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...