GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (2)
  • 1
    Publication Date: 2018-05-29
    Description: Peridotite xenoliths from the Quaternary Cerro del Fraile basalts, southernmost South America, sample the mantle less than 25 km east of the Andean Austral Volcanic Zone (AVZ), an arc segment characterized by melting of a young, 'hot', subducted slab and the eruption of adakites. Many of these peridotite xenoliths are modified by either modal and/or cryptic Na-rich metasomatism, which produced elevated Sr/Y, La/Yb and La/Nb ratios typical of slab melts. Some of the metasomatized xenoliths, derived from a relatively deep and hot portion of the mantle, contain an interconnected network along mineral grain boundaries of high-Mg#, low-Y andesitic glass with major and trace element composition similar to the high-Mg adakites erupted in the AVZ. We interpret this adakitic glass to be a quenched slab melt that has infiltrated the mantle wedge from below. The texture and chemistry of this quenched melt and surrounding mantle minerals suggest that selective assimilation of predominately mantle clinopyroxene, some spinel and minor olivine is an important process in producing high-Mg adakites from primary low-Mg slab melts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: With the increase in computational power, ocean models with kilometer-scale resolution have emerged over the last decade. These models have been used for quantifying the energetic exchanges between spatial scales, informing the design of eddy parametrizations, and preparing observing networks. The increase in resolution, however, has drastically increased the size of model outputs, making it difficult to transfer and analyze the data. It remains, nonetheless, of primary importance to assess more systematically the realism of these models. Here, we showcase a cloud-based analysis framework proposed by the Pangeo project that aims to tackle such distribution and analysis challenges. We analyze the output of eight submesoscale-permitting simulations, all on the cloud, for a crossover region of the upcoming Surface Water and Ocean Topography (SWOT) altimeter mission near the Gulf Stream separation. The cloud-based analysis framework (i) minimizes the cost of duplicating and storing ghost copies of data and (ii) allows for seamless sharing of analysis results amongst collaborators. We describe the framework and provide example analyses (e.g., sea-surface height variability, submesoscale vertical buoyancy fluxes, and comparison to predictions from the mixed-layer instability parametrization). Basin- to global-scale, submesoscale-permitting models are still at their early stage of development; their cost and carbon footprints are also rather large. It would, therefore, benefit the community to document the different model configurations for future best practices. We also argue that an emphasis on data analysis strategies would be crucial for improving the models themselves.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...