GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-24
    Description: Deepwater landslides are often underestimated as potential tsunami triggers. The North Gorringe avalanche (NGA) is a large (∼80 km3 and 35 km runout) newly discovered and deepwater (2900 m to 5100 m depth) mass failure located at the northern flank of Gorringe Bank on the southwest Iberian margin. Steep slopes and pervasive fracturing are suggested as the main preconditioning factors for the NGA, while an earthquake is the most likely trigger mechanism. Near-field tsunami simulations show that a mass failure similar to the NGA could generate a wave 〉15 m high that would hit the south Portuguese coasts in ∼30 min. This suggests that deepwater landslides require more attention in geo-hazard assessment models of southern Europe, as well as, at a global scale, in seismically active margins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-08
    Description: Landslides associated with flank collapse are volumetrically the most significant sediment transport process around volcanic islands. Around Montserrat, in the Lesser Antilles, individual landslide deposits have volumes (1 to 20 km3) that are up to two orders of magnitude larger than recent volcanic dome collapses (up to 0.2 km3). The largest landslide deposits were emplaced in at least two stages, initiated by the emplacement of volcanic debris avalanches which then triggered larger-scale failure of seafloor sediment, with deformation propagating progressively downslope for up to 30 km on gradients of 〈 1°. An unusually detailed seismic, side-scan sonar and bathymetric dataset shows that the largest landslide off Montserrat (forming Deposit 8) incorporated ~ 70 m of in-situ sediment stratigraphy, and comprises ~ 80% seafloor sediment by volume. Well-preserved internal bedding and a lack of shortening at the frontally-confined toe of the landslide, shows that sediment failure involved only limited downslope transport. We discuss a range of models for progressively-driven failure of in-situ bedded seafloor sediment. For Deposit 8 and for comparable deposits elsewhere in the Lesser Antilles, we suggest that failure was driven by an over-running surface load that generated excess pore pressures in a weak and deforming undrained package of underlying stratigraphy. A propagating basal shear rupture may have also enhanced the downslope extent of sediment failure. Extensive seafloor-sediment failure may commonly follow debris avalanche emplacement around volcanic islands if the avalanche is emplaced onto a fine-grained parallel-bedded substrate. The timing of landslides off Montserrat is clustered, and associated with the deposition of thick submarine pyroclastic fans. These episodes of enhanced marine volcaniclastic input are separated by relatively quiescent periods of several 100 ka, and correspond to periods of volcanic edifice maturity when destructive processes dominate over constructive processes. Highlights: ► Marine volcanic debris avalanche emplacement can lead to much larger sediment failure. ► Failure is progressive, through in situ-strata, and frontally non-emergent. ► Sediment failure propagates on very low gradients, dominating final deposit volume. ► Process involves undrained loading and/or shear rupture, and may be repeated widely. ► Landslide timing reflects timescales of volcanic edifice growth and destruction
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Earth Surface, 112 . F02001.
    Publication Date: 2021-05-11
    Description: Spreading is a common type of ground failure in subaerial environments. However, this type of mass movement has hardly been documented in submarine settings. In this paper we show that spreading covers at least 25% of the Storegga Slide scar area, a giant submarine slide located offshore mid-Norway. The morphological signature of spreading is a repetitive pattern of ridges and troughs oriented perpendicular to the direction of movement. Two modes of failure can be identified: retrogressive failure of the headwall and slab failure and extension, both involving the breakup of a sediment unit into coherent blocks. These blocks are displaced downslope along planar slip surfaces. Limit equilibrium modeling indicates that loss of support and seismic loading are the main potential triggering mechanisms. The extent of displacement of the spreading sediment is controlled by gravitationally induced stress, angle of internal friction of the sediment, pore pressure escape, and friction. The resulting block movement pattern entails an exponential increase of displacement and thinning of the failing sediment with distance downslope. Sediment properties explain the remaining spatial variation of ridge and trough morphologies associated with spreading.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Quaternary Science Reviews, 30 (13-14). pp. 1710-1725.
    Publication Date: 2019-09-23
    Description: Ice streams are the fast-flowing zones of ice sheets that can discharge a large flux of ice. The glaciated western Svalbard margin consists of several cross-shelf troughs which are the former ice stream drainage pathways during the Pliocene–Pleistocene glaciations. From an integrated analysis of high-resolution multibeam swath-bathymetric data and several high-resolution two-dimensional reflection seismic profiles across the western and northwestern Svalbard margin we infer the ice stream flow directions and the deposition centres of glacial debris that the ice streams deposited on the outer margin. Our results show that the northwestern margin of Svalbard experienced a switching of a major ice stream. Based on correlation with the regional seismic stratigraphy as well as the results from ODP 911 on Yermak Plateau and ODP 986 farther south on the western margin of Spitsbergen, off Van Mijenfjord, we find that first a northwestward flowing ice stream developed during initial northern hemispheric cooling (starting ∼2.8–2.6 Ma). A switch in ice stream flow direction to the present-day Kongsfjorden cross-shelf trough took place during a glaciation at ∼1.5 Ma or probably later during an intensive major glaciation phase known as the ‘Mid-Pleistocene Revolution’ starting at ∼1.0 Ma. The seismic and bathymetric data suggest that the switch was abrupt rather than gradual and we attribute it to the reaching of a tipping point when growth of the Svalbard ice sheet had reached a critical thickness and the ice sheet could overcome a topographic barrier. Highlights ► Reflection seismic data reveal two glacial fans at northwest Svalbard margin. ► The fans are result of ice stream activities during Pliocene–Pleistocene glaciations. ► Based on seismic and bathymetric data we find the flow directions of the ice streams. ► We find a switch in ice stream flow direction. ► The switch resulted as the ice sheet became thick and overcame a topographic barrier.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Earth Surface, 112 . F03023.
    Publication Date: 2021-05-11
    Description: In comparison to subaerial and planetary landscapes, submarine environments are rarely investigated using quantitative geomorphological techniques. Application of traditional geomorphometric techniques is hindered by the spatial variability in bathymetric data resolution and the extensive scale over which changes in topography occur. We propose a novel methodology for the improved quantitative analysis of submarine elevation data by adapting numerical techniques, developed for subaerial analyses, to submarine environments. The method integrates three main morphometric techniques: (1) morphometric attributes and their statistical analyses, (2) feature-based quantitative representation, and (3) automated topographic classification. These techniques allow useful morphological information to be extracted from a digital elevation model. Morphometric attributes and their statistical analyses provide summary information about an area, which can be used to calibrate computer-generated geomorphometric maps. In these maps the boundaries of geomorphological features are delineated, and they can thus be used as the basis for geomorphological interpretation. Ridge patterns and their morphological characteristics provide an accurate representation of specific aspects of terrain variability. Moment statistics are used as proxies of surface roughness to differentiate between surface types. Unsupervised classification, carried out using ridge characteristics and moment statistics, reliably segments the surface into units of homogeneous topography. A case study of debris flow lobes within the Storegga Slide shows that the techniques work robustly and that the new methodology integrating all the techniques can significantly enhance submarine geomorphological investigations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: High-resolution acoustic and seismic data acquired 100 km offshore Cape São Vicente, image with unprecedented detail one of the largest active reverse faults of the SW Iberian Margin, the Horseshoe Fault (HF). The HF region is an area seismogenically active, source of the largest magnitude instrumental and historical earthquake (Mw〉6) occurred in the SW Iberian Margin. The HF corresponds to a N40 trending, 110 km long, and NW-verging active thrust that affects the whole sedimentary sequence and reaches up to the seafloor, generating a relief of more than 1 km. The along-strike structural variability as well as fault trend suggests that the HF is composed by three main sub-segments: North (N25), Central (N50) and South (N45). Swath-bathymetry, TOBI sidescan sonar backscatter and parametric echosounder TOPAS profiles reveal the surface morphology of the HF block, characterized by several, steep (20º) small scarps located on the hangingwall, and a succession of mass transport deposits (i.e. turbidites) on its footwall, located in the Horseshoe Abyssal Plain. A succession of pre-stack depth-migrated multichannel seismic reflection profiles across the HF and neighboring areas allowed us to constrain their seismo-stratigraphy, structural geometry, tectono-sedimentary evolution from Upper Jurassic to present-day, and to calculate their fault parameters. Finally, on the basis of segment length, surface fault area and seismogenic depth we evaluated the seismic potential of the HF, which in the worst-case scenario may generate an earthquake of magnitude Mw 7.8 ± 0.1. Thus, considering the tectonic behavior and near-shore location, the HF should be recognized in seismic and tsunami hazard assessment models of Western Europe and North Africa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-02-19
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-02-19
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Oceanography Society
    In:  Oceanography, 22 (1). p. 85.
    Publication Date: 2019-09-23
    Description: P-Cable technology was developed to acquire detailed three-dimensional images of the subsurface in a cost-efficient way. The system was improved and used in the HERMES project to image cold seep sites and slide areas in the Gulf of Cádiz and the Mediterranean and Barents seas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    In:  Quaternary Science Reviews, 28 (5/6). pp. 433-448.
    Publication Date: 2021-05-11
    Description: The Storegga Slide, which occurred ∼8100 years ago, is one of the world's largest and best studied exposed submarine landslides. In this study we use novel geomorphometric techniques to constrain the submarine mass movements that have shaped the north-eastern Storegga Slide, understand the link between different forms of failure, and propose a revised development model for this region. According to this model, the north-eastern part of the Storegga Slide has developed in four major events. The first event (event 1) was triggered in water depths of 1500–2000 m. In this event, the surface sediments were removed by debris flows and turbidity currents, and deposited in the Norwegian Sea Basin. Loading of the seabed by sediments mobilised by the debris flows and turbidity currents resulted in the development of an evacuation structure. Loss of support associated with this evacuation structure, reactivation of old headwalls and seismic loading activated spreading in the failure surface of event 1 up to the main headwall (event 2). In some areas, spreading blocks have undergone high displacement and remoulding. Parts of the spreading morphology and the underlying sediment have been deformed or removed by numerous debris flows and turbidity currents (event 3). We suggest that the higher displacement and remoulding of the spreading blocks, and their removal by debris flows and turbidity currents, was influenced by increased pore pressures, possibly due to gas hydrate dissolution/dissociation or by lateral variability in the deposition of contourite drifts in palaoeslide scars. The fourth event entailed a large, blocky debris flow that caused localised compression and transpressive shearing in the southern part of the spreading area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...