GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-05-17
    Description: New seismic imaging and seismotectonic data from the southwest Iberian margin, the site of the present-day boundary between the European and African plates, reveal that active strike slip is occurring along two prominent lineaments that have recently been mapped using multibeam bathymetry. Multichannel seismic and subbottom profiler images acquired across the lineaments show seafloor displacements and active faulting to depths of at least 10 km and of a minimum length of 150 km. Seismic moment tensors show predominantly WNW–ESE right-lateral strike-slip motion, i.e., oblique to the direction of plate convergence. Estimates of earthquake source depths close to the fault planes indicate upper mantle (i.e., depths of 40–60 km) seismogenesis, implying the presence of old, thick, and brittle lithosphere. The estimated fault seismic parameters indicate that the faults are capable of generating great magnitude (Mw ≥ 8.0) earthquakes. Such large events raise the concomitant possibility of slope failures that have the potential to trigger tsunamis. Consequently, our findings identify an unreported earthquake and tsunami hazard for the Iberian and north African coastal areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-18
    Description: Recently acquired swath-bathymetry data and high-resolution seismic reflection profiles offshore Adra (Almería, Spain) reveal the surficial expression of a NW–SE trending 20 km-long fault, which we termed the Adra Fault. Seismic imaging across the structure depicts a sub-vertical fault reaching the seafloor surface and slightly dipping to the NE showing an along-axis structural variability. Our new data suggest normal displacement of the uppermost units with probably a lateral component. Radiocarbon dating of a gravity core located in the area indicates that seafloor sediments are of Holocene age, suggesting present-day tectonic activity. The NE Alboran Sea area is characterized by significant low-magnitude earthquakes and by historical records of moderate magnitude, such as the Mw = 6.1 1910 Adra Earthquake. The location, dimension and kinematics of the Adra Fault agree with the fault solution and magnitude of the 1910 Adra Earthquake, whose moment tensor analysis indicates normal-dextral motion. The fault seismic parameters indicate that the Adra Fault is a potential source of large magnitude (Mw ≤ 6.5) earthquakes, which represents an unreported seismic hazard for the neighbouring coastal areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-24
    Description: We report on newly discovered mud volcanoes located at ∼4500 m water depth ∼90 km west of the deformation front of the accretionary wedge of the Gulf of Cadiz, and thus outside of their typical geotectonic environment. Seismic data suggest that fluid flow is mediated by a 〉400-km-long strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical data (Cl, B, Sr, 87Sr/86Sr, δ18O, δD) reveal that fluids originate in oceanic crust older than 140 Ma. On their rise to the surface, these fluids receive strong geochemical signals from recrystallization of Upper Jurassic carbonates and clay-mineral dehydration in younger terrigeneous units. At present, reports of mud volcanoes in similar deep-sea settings are rare, but given that the large area of transform-type plate boundaries has been barely investigated, such pathways of fluid discharge may provide an important, yet unappreciated link between the deeply buried oceanic crust and the deep ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: High-resolution acoustic and seismic data acquired 100 km offshore Cape São Vicente, image with unprecedented detail one of the largest active reverse faults of the SW Iberian Margin, the Horseshoe Fault (HF). The HF region is an area seismogenically active, source of the largest magnitude instrumental and historical earthquake (Mw〉6) occurred in the SW Iberian Margin. The HF corresponds to a N40 trending, 110 km long, and NW-verging active thrust that affects the whole sedimentary sequence and reaches up to the seafloor, generating a relief of more than 1 km. The along-strike structural variability as well as fault trend suggests that the HF is composed by three main sub-segments: North (N25), Central (N50) and South (N45). Swath-bathymetry, TOBI sidescan sonar backscatter and parametric echosounder TOPAS profiles reveal the surface morphology of the HF block, characterized by several, steep (20º) small scarps located on the hangingwall, and a succession of mass transport deposits (i.e. turbidites) on its footwall, located in the Horseshoe Abyssal Plain. A succession of pre-stack depth-migrated multichannel seismic reflection profiles across the HF and neighboring areas allowed us to constrain their seismo-stratigraphy, structural geometry, tectono-sedimentary evolution from Upper Jurassic to present-day, and to calculate their fault parameters. Finally, on the basis of segment length, surface fault area and seismogenic depth we evaluated the seismic potential of the HF, which in the worst-case scenario may generate an earthquake of magnitude Mw 7.8 ± 0.1. Thus, considering the tectonic behavior and near-shore location, the HF should be recognized in seismic and tsunami hazard assessment models of Western Europe and North Africa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-31
    Description: On the 25th January 2016 a magnitude Mw 6.3 earthquake struck 45 km offshore north Morocco, the largest recorded event in the Alboran Sea (western Mediterranean). It was preceded on 21 January by an earthquake of magnitude 5.1 in the same epicentral area, and was followed by numerous aftershocks whose locations mainly migrated south and northeast from the mainshock. The mainshock nucleated at a releasing bend of the poorly known Al-Idrissi Fault. According to slip inversion we assume a 20 to maximum 30 km long rupture zone. We use swath-bathymetry, seismic reflection profiles and seismological data to characterize and document Quaternary activity on the 100 km long Al-Idrissi Fault. We report evidence of left-lateral strike-slip displacement, characterize their fault segments and demonstrate that Al-Idrissi is the fault source of the 2016 earthquake events. Located along a crustal boundary that separates the West and East Alboran Sea, the Al-Idrissi Fault is a young structure. Its central segment, mainly transpressive, was developed during the Early Pliocene while the north and south segments are transtensional and of Quaternary age. All these observations together suggest that the Mw 6.4 earthquake broke across the southern and central segment boundary. Therefore, the complete rupture of the Al-Idrissi Fault should be considered and might generate a greater rupture (Mw 7.2), significantly increasing the potential hazard of the structure.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  [Talk] In: AAPG Workshop on Alpine folded belts and extensional basins, 15.-16.03.2018, Granada, Spain .
    Publication Date: 2018-06-01
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-05-31
    Description: Recent advances in seafloor and subsurface imaging allow accurately mapping and characterizing the kinematic pattern and the style of deformation of submarine faults with unprecedented detail to better assess seismic and tsunami hazards in coastal areas. The Alboran Sea is a Neogene basin generated by crustal extension associated with the subduction in the Gibraltar Arc. At present, several fault systems absorb part of the strain related to the NW-SE convergence (4-5.5 mm/yr) between the African and Eurasian plates. Consequently, the Alboran Sea shows a significant seismic activity. New high-resolution bathymetric and seismic data reveal the presence of poorly known pervasive fault systems in the central part of the Alboran Sea, the Averroes Fault (AF) and the North Averroes Faults (NAFs). These are secondary fault systems located between two large active faults, the Carboneras and Yusuf/Alboran Ridge faults, and represent a hitherto unrecognized seismogenic potential. The WNW-ESE trending AF and NAFs, which may have evolved since the Lower Pliocene (4.57 Ma), are subvertical right-lateral strike-slip active faults since: a) are offsetting the Quaternary sedimentary units and deforming the seafloor; and b) produce a right-lateral displacement of the northwestern margin of the Alboran Channel and across the Adra Ridge North. Given that the AF and NAFs have formed in a continental crust and that are located in a zone surrounded by some of the main active faults in the Alboran Sea, we postulate that these fault systems have been developed into a distributed dextral strike-slip shear zone with the local bulk shear striking approximately N90º. Considering their surface length they could generate earthquakes with magnitudes (Mw) between 6.3 and 7.2, but reaching 7.6 when AF and Yusuf Fault are linked. The high resolution bathymetry map has allowed us measuring lateral offsets produced by the AF and NAFs. Assuming that these displacements have been accumulated during the last 4.57 Ma, the calculated lateral slip rate for AF is approximately1.5 mm/yr and range between 0.2 and 0.4 mm/yr for the NAFs. Our results evidence the importance of the kinematic and seismogenic characterization of secondary fault systems to better comprehend earthquake and tsunami hazards.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: The SW Iberian margin is one of the most seismogenic and tsunamigenic areas in W-Europe, where large historical and instrumental destructive events occurred. To evaluate the sensitivity of the tsunami impact on the coast of SW Iberia and NW Morocco to the fault geometry and slip distribution for local earthquakes, we carried out a set of tsunami simulations considering some of the main known active crustal faults in the region: the Gorringe Bank (GBF), Marquês de Pombal (MPF), Horseshoe (HF), North Coral Patch (NCPF) and South Coral Patch (SCPF) thrust faults, and the Lineament South (LSF) strike-slip fault. We started by considering for all of them relatively simple planar faults featuring with uniform slip distribution; we then used a more complex 3D fault geometry for the faults constrained with a large 2D multichannel seismic dataset (MPF, HF, NCPF, and SCPF); and finally, we used various heterogeneous slip distributions for the HF. Our results show that using more complex 3D fault geometries and slip distributions, the peak wave height at the coastline can double compared to simpler tsunami source scenarios from planar fault geometries. Existing tsunami hazard models in the region use homogeneous slip distributions on planar faults as initial conditions for tsunami simulations and therefore underestimate tsunami hazard. Complex 3D fault geometries and non-uniform slip distribution should be considered in future tsunami hazard updates. The tsunami simulations also support the finding that submarine canyons attenuate the wave height reaching the coastline, while submarine ridges and shallow shelves have the opposite effect.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-03-24
    Description: We report on newly discovered mud volcanoes located at ~4500 m water depth ~90 km west of the deformation front of the accretionary wedge of the Gulf of Cadiz, and thus outside of their typical geotectonic environment. Seismic data suggest that fluid flow is mediated by a 〉400-km-long strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical data (Cl, B, Sr, 87 Sr/ 86 Sr, 18 O, D) reveal that fluids originate in oceanic crust older than 140 Ma. On their rise to the surface, these fluids receive strong geochemical signals from recrystallization of Upper Jurassic carbonates and clay-mineral dehydration in younger terrigeneous units. At present, reports of mud volcanoes in similar deep-sea settings are rare, but given that the large area of transform-type plate boundaries has been barely investigated, such pathways of fluid discharge may provide an important, yet unappreciated link between the deeply buried oceanic crust and the deep ocean.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...