GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 10 (1). pp. 229-260.
    Publication Date: 2020-06-11
    Description: Oxygen loss in the ocean, termed deoxygenation, is a major consequence of climate change and is exacerbated by other aspects of global change. An average global loss of 2% or more has been recorded in the open ocean over the past 50-100 years, but with greater oxygen declines in intermediate waters (100-600 m) of the North Pacific, the East Pacific, tropical waters, and the Southern Ocean. Although ocean warming contributions to oxygen declines through a reduction in oxygen solubility and stratification effects on ventilation are reasonably well understood, it has been a major challenge to identify drivers and modifying factors that explain different regional patterns, especially in the tropical oceans. Changes in respiration, circulation (including upwelling), nutrient inputs, and possibly methane release contribute to oxygen loss, often indirectly through stimulation of biological production and biological consumption. Microbes mediate many feedbacks in oxygen minimum zones that can either exacerbate or ameliorate deoxygenation via interacting nitrogen, sulfur, and carbon cycles. The paleo-record reflects drivers of and feedbacks to deoxygenation that have played out through the Phanerozoic on centennial, millennial, and hundred-million-year timescales. Natural oxygen variability has made it difficult to detect the emergence of a climate-forced signal of oxygen loss, but new modeling efforts now project emergence to occur in many areas in 15-25 years. Continued global deoxygenation is projected for the next 100 or more years under most emissions scenarios, but with regional heterogeneity. Notably, even small changes in oxygenation can have significant biological effects. New efforts to systematically observe oxygen changes throughout the open ocean are needed to help address gaps in understanding of ocean deoxygenation patterns and drivers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: As plastic waste pollutes the oceans and fish stocks decline, unseen below the surface another problem grows: deoxygenation. Breitburg et al. review the evidence for the downward trajectory of oxygen levels in increasing areas of the open ocean and coastal waters. Rising nutrient loads coupled with climate change—each resulting from human activities—are changing ocean biogeochemistry and increasing oxygen consumption. This results in destabilization of sediments and fundamental shifts in the availability of key nutrients. In the short term, some compensatory effects may result in improvements in local fisheries, such as in cases where stocks are squeezed between the surface and elevated oxygen minimum zones. In the longer term, these conditions are unsustainable and may result in ecosystem collapses, which ultimately will cause societal and economic harm.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 58 (5). pp. 1640-1656.
    Publication Date: 2019-09-23
    Description: During the discovery and description of seven New Zealand methane seep sites, an infaunal assemblage dominated by ampharetid polychaetes was found in association with high seabed methane emission. This ampharetid-bed assemblage had a mean density of 57,000 ± 7800 macrofaunal individuals m−2 and a maximum wet biomass of 274 g m−2, both being among the greatest recorded from deep-sea methane seeps. We investigated these questions: Does the species assemblage present within these ampharetid beds form a distinct seep community on the New Zealand margin? and What type of chemoautotrophic microbes fuel this heterotrophic community? Unlike the other macro-infaunal assemblages, the ampharetid-bed assemblage composition was homogeneous, independent of location. Based on a mixing model of species-specific mass and isotopic composition, combined with published respiration measurements, we estimated that this community consumes 29–90 mmol C m−2 d−1 of methane-fueled biomass; this is 〉 290 times the carbon fixed by anaerobic methane oxidizers in these ampharetid beds. A fatty acid biomarker approach supported the finding that this community, unlike those previously known, consumes primarily aerobic methanotrophic bacteria. Due to the novel microbial fueling and high methane flux rates, New Zealand's ampharetid beds provide a model system to study the influence of metazoan grazing on microbially mediated biogeochemical cycles, including those that involve greenhouse gas emissions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Description: Increasing interest in deep-seabed mining has raised many questions surrounding its potential environmental impacts and how to assess the impacts’ significance. Under the United Nations Convention on the Law of the Sea (UNCLOS), the International Seabed Authority (ISA) is charged with ensuring effective protection of the marine environment as part of its responsibilities for managing mining in seabed areas beyond national jurisdiction (the Area) on behalf of humankind. This paper examines the international legal context for protection of the marine environment and defining the significant adverse change that can cause “serious harm”, a term used in the ISA Mining Code to indicate a level of harm that strong actions must be taken to avoid. It examines the thresholds and indicators that can reflect significant adverse change and considers the specific vulnerability of the four ecosystems associated with the minerals targeted for mining: (1) manganese (polymetallic) nodules, (2) seafloor massive (polymetallic) sulphides, (3) cobalt-rich (polymetallic) crusts and (4) phosphorites. The distributions and ecological setting, probable mining approaches and the potential environmental impacts of mining are examined for abyssal polymetallic nodule provinces, hydrothermal vents, seamounts and phosphorite-rich continental margins. Discussion focuses on the special features of the marine environment that affect the significance of the predicted environmental impacts and suggests actions that will advance understanding of these impacts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-08
    Description: Ocean manipulation to mitigate climate change may harm deep-sea ecosystems
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: A comprehensive understanding of the deep-sea environment and mining’s likely impacts is necessary to assess whether and under what conditions deep-seabed mining operations comply with the International Seabed Authority’s obligations to prevent ‘serious harm’ and ensure the ‘effective protection of the marine environment from harmful effects’ in accordance with the United Nations Convention on the Law of the Sea. A synthesis of the peer-reviewed literature and consultations with deep-seabed mining stakeholders revealed that, despite an increase in deep-sea research, there are few categories of publicly available scientific knowledge comprehensive enough to enable evidence-based decision-making regarding environmental management, including whether to proceed with mining in regions where exploration contracts have been granted by the International Seabed Authority. Further information on deep-sea environmental baselines and mining impacts is critical for this emerging industry. Closing the scientific gaps related to deep-seabed mining is a monumental task that is essential to fulfilling the overarching obligation to prevent serious harm and ensure effective protection, and will require clear direction, substantial resources, and robust coordination and collaboration. Based on the information gathered, we propose a potential high-level road map of activities that could stimulate a much-needed discussion on the steps that should be taken to close key scientific gaps before any exploitation is considered. These steps include the definition of environmental goals and objectives, the establishment of an international research agenda to generate new deep-sea environmental, biological, and ecological information, and the synthesis of data that already exist.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO2DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO2DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO2DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO2DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O2 will improve our understanding of the ocean O2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO2DAT will allow scientists to fully harness the increasing volumes of O2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO2DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO2DAT is proposed highlighting the efforts needed (e.g., in terms of human resources).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...