GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2020-02-06
    Beschreibung: Shallow gas migration along hydrocarbon wells constitutes a potential methane emission pathway that currently is not recognized in any regulatory framework or greenhouse gas inventory. Recently, the first methane emission measurements at three abandoned offshore wells in the Central North Sea (CNS) were conducted showing that considerable amounts of biogenic methane originating from shallow gas accumulations in the overburden of deep reservoirs were released by the boreholes. Here, we identify numerous wells poking through shallow gas pockets in 3D seismic data of the CNS indicating that about one third of the wells may leak, potentially releasing a total of 3-17 kt of methane per year into the North Sea. This poses a significant contribution to the North Sea methane budget. A large fraction of this gas (~42 %) may reach the atmosphere via direct bubble transport (0-2 kt yr-1) and via diffusive exchange of methane dissolving in the surface mixed layer (1-5 kt yr-1), as indicated by numerical modeling. In the North Sea and in other hydrocarbon-prolific provinces of the world shallow gas pockets are frequently observed in the sedimentary overburden and aggregate leakages along the numerous wells drilled in those areas may be significant.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-02-08
    Beschreibung: Highlights • Application of mobile underwater in situ gamma-ray spectroscopy. • Localization of pockmarks emanating groundwater. • Radon progeny 214Bi proved an efficient radiotracer for localization purposes. • Potassium 40K is suggested as additional to radon radiotracers to localize fluid emanation areas whenever sediment is in mixture with the fluid or resuspension of sediment occurs. Abstract Eckernförde Bay in the Baltic Sea is well-known for the pockmarks areas which are located in the centre and off the southern shore-line of the bay emanating groundwater in a non-continuous but episodic way. Mobile underwater in situ gamma-ray spectroscopy is exploited proving that both 214Bi and 40K are efficient radiotracers for localization of seepage areas whenever either sediment is in mixture with the emanating fluid or resuspension of surface sediment occurs as a side effect of the fluid emanation.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-02-01
    Beschreibung: Atlantis II Deep, a submarine basin of the Red Sea, is noteworthy because of its hydrothermally active brine pools. High-resolution temperature records from Poseidon Cruise during February 2011 revealed small steps thermal staircase in the lower transition zone from ≈2002 to 2008/2009 m depth at stations. Four vertically well-mixed convective layers, lower convective layer (LCL) and upper convective layers (UCL1–3), separated by high-temperature gradients at the interfaces were observed. The temperature of the layers UCL1–3 has dropped between 2008 and 2011. The top of UCL3 extends to about 2008/2009 m at stations and its average thickness has increased from 3.3 ± 0.5 m in 1992 to 7 m in 2011, whereas the thickness of layers UCL1–2 has decreased from 25.2 ± 0.3 m to 19.8 m and from 16.4 ± 0.5 m to 14.7 m, respectively, during this time. The upward buoyancy flux is 0.032 to 0.038 × 10−7 m2 s−3 which gives migration speed of UCL3 layer from 0.1 to 0.12 m year−1. With this speed, the thermal staircase ≈6 m thick will merge with UCL3 in 50 to 60 years increasing the thickness from 7 m to nearly 13 m.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-02-01
    Beschreibung: Large quantities of the greenhouse gas methane (CH4) are stored in the seafloor. The flux of CH4 from the sediments into the water column and finally to the atmosphere is mitigated by a series of microbial methanotrophic filter systems of unknown efficiency at highly active CH4-release sites in shallow marine settings. Here, we studied CH4-oxidation and the methanotrophic community at a high-CH4-flux site in the northern North Sea (well 22/4b), where CH4 is continuously released since a blowout in 1990. Vigorous bubble emanation from the seafloor and strongly elevated CH4 concentrations in the water column (up to 42 µM) indicated that a substantial fraction of CH4 bypassed the highly active (up to ∼2920 nmol cm−3 d−1) zone of anaerobic CH4-oxidation in sediments. In the water column, we measured rates of aerobic CH4-oxidation (up to 498 nM d−1) that were among the highest ever measured in a marine environment and, under stratified conditions, have the potential to remove a significant part of the uprising CH4 prior to evasion to the atmosphere. An unusual dominance of the water-column methanotrophs by Type II methane-oxidizing bacteria (MOB) is partially supported by recruitment of sedimentary MOB, which are entrained together with sediment particles in the CH4 bubble plume. Our study thus provides evidence that bubble emission can be an important vector for the transport of sediment-borne microbial inocula, aiding in the rapid colonization of the water column by methanotrophic communities and promoting their persistence close to highly active CH4 point sources.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-06-29
    Beschreibung: Seafloor seepage of hydrocarbon-bearing fluids has been identified in a number of marine forearcs. However, temporal variations in seep activity and the structural and tectonic parameters that control the seepage often remain poorly constrained. Subduction-zone earthquakes for example, are often discussed to trigger seafloor seepage but causal links that go beyond theoretical considerations have not yet been fully established. This is mainly due to the inaccessibility of offshore epicentral areas, the infrequent occurrence of large earthquakes, and challenges associated with offshore monitoring of seepage over large areas and sufficient time periods. Here, we report visual, geochemical, geophysical, and modelling results and observations from the Concepción Methane Seep Area (offshore Central Chile) located in the rupture area of the 2010 Mw. 8.8 Maule earthquake. High methane concentrations in the oceanic water column and a shallow sub-bottom depth of sulfate penetration indicate active methane seepage. The stable carbon isotope signature of the methane and hydrocarbon composition of the released gas indicate a mixture of shallow-sourced biogenic gas and a deeper sourced thermogenic component. Pristine fissures and fractures observed at the seafloor together with seismically imaged large faults in the marine forearc may represent effective pathways for methane migration. Upper-plate fault activity with hydraulic fracturing and dilation is in line with increased normal Coulomb stress during large plate-boundary earthquakes, as exemplarily modelled for the 2010 earthquake. On a global perspective our results point out the possible role of recurring large subduction-zone earthquakes in driving hydrocarbon seepage from marine forearcs over long timescales.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2017-12-19
    Beschreibung: A recently developed deep-sea telemetry (DST), based on the digital subscriber line technology, has been successfully used to equip various remotely operated underwater devices with online video control, high-speed data transmission, and power supply via standard coaxial cables with a length of up to 8,000 m. The system has been applied to study and sample the extreme saline and high-temperature conditions of the Red Sea brines and to detect gas emissions at abandoned wells in the North Sea. In both applications, it has been integrated into a water sampler rosette, providing live video streaming and internal recording from commercial high-definition and analog cameras as well as simultaneous data transmission from a suite of sensors to record and sample the distribution of dissolved gases (e.g., methane and CO2) and oceanographic parameters. This combination makes an ideal survey and monitoring tool for leak detection even in harsh subsea environments. The DST has also been used to deploy landers at selected spots at the seafloor. In combination with remotely operated vehicle (ROV) deployments, this technique can be used to increase significantly the efficiency of ROV bottom time during deep-water operations. The high quality of the video transmission, ease of operation, and versatile application make this novel system superior to existing conventional analog transmission systems.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    Elsevier
    In:  Marine and Petroleum Geology, 68 . pp. 776-788.
    Publikationsdatum: 2017-12-19
    Beschreibung: Highlights • First study using long-term passive acoustic monitoring of methane seeps at well blowout site 22/4b. • Seep acoustic temporal variations correlated with ocean tides. • Major acoustic transient event recorded on 8 December 2011 with high temporal resolution. Abstract Marine seeps produce underwater sounds as a result of bubble formation and fragmentation upon emission from the seabed. The frequency content and sound levels of these emissions are related to bubble size distribution and emission flux, providing important information on methane release from the seafloor. Long-term passive acoustic monitoring was used to continuously record seep sounds over a 7-month period within the blowout crater at the abandoned well site, 22/4b, in the central North Sea. Also recorded were water column fluid velocities and near-seafloor water conductivity, temperature, and pressure. Acoustic signatures were primarily from ∼1 to 10 kHz. Key features were relatively broad spectral peaks at about 1.0, 1.5, 2.2, 3.1, 3.6 and 5.1 kHz. Temporal variations in spectral levels were apparently associated with tides. The recordings also documented a series of major episodic events including a large and persistent increase (∼10 dB) in overall sound levels and spectral broadening on 8 December 2011. The acoustic temporal pattern of this event was consistent with other recorded large transient events in the literature, and the major event was correlated with dramatic changes in other measurements, including increased water column fluid velocities, increased pressure and decreased salinity, indicating real changes in emission flux. Observed seabed morphology changes reported elsewhere in this special issue, also likely were related to this event. These data demonstrate the dynamic nature of marine seepage systems, show the value of monitoring systems, and provide direct supporting evidence for a violent formation mechanism of many widespread seep-associated seabed features like pockmarks.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2017-04-11
    Beschreibung: Highlights • High abundance of active anaerobic methanotrophs in sediments of the blowout crater suggests adaptation to methane seepage within at most two decades. • Fast exchange processes in permeable surface sediments prevent sulfate depletion and probably methane-derived carbonate precipitation. • Methane seepage impacts isotopic and assemblage composition of benthic foraminifera. Abstract Methane emissions from marine sediments are partly controlled by microbial anaerobic oxidation of methane (AOM). AOM provides a long-term sink for carbon through precipitation of methane-derived authigenic carbonates (MDAC). Estimates on the adaptation time of this benthic methane filter as well as on the establishment of related processes and communities after an onset of methane seepage are rare. In the North Sea, considerable amounts of methane have been released since 20 years from a man-made gas blowout offering an ideal natural laboratory to study the effects of methane seepage on initially “pristine” sediment. Sediment cores were taken from the blowout crater and a reference site (50 m distance) in 2011 and 2012, respectively, to investigate porewater chemistry, the AOM community and activity, the presence of authigenic carbonates, and benthic foraminiferal assemblages. Potential AOM activity (up to 3060 nmol cm−3 sediment d−1 or 375 mmol m−2 d−1) was detected only in the blowout crater up to the maximum sampling depth of 18 cm. CARD-FISH analyzes suggest that monospecific ANME-2 aggregates were the only type of AOM organisms present, showing densities (up to 2.2*107 aggregates cm−3) similar to established methane seeps. No evidence for recent MDAC formation was found using stable isotope analyzes (δ13C and δ18O). In contrast, the carbon isotopic signature of methane was recorded by the epibenthic foraminifer Cibicides lobatulus (δ13C −0.66‰). Surprisingly, the foraminiferal assemblage in the blowout crater was dominated by Cibicides and other species commonly found in the Norwegian Channel and fjords, indicating that these organisms have responded sensitively to the specific environmental conditions at the blowout. The high activity and abundance of AOM organisms only at the blowout site suggests adaptation to a strong increase in methane flux in the order of at most two decades. High gas discharge dynamics in permeable surface sediments facilitate fast sulfate replenishing and stimulation of AOM. The accompanied prevention of total alkalinity build-up in the porewater thereby appears to inhibit the formation of substantial methane-derived authigenic carbonate at least within the given time window.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2020-11-23
    Beschreibung: Highlights • Mega ebullition of biogenic methane from an abandoned offshore gas well, North Sea. • Evidence for midwater bubble plume intrusion, fallback, and short-circuiting of the plume. • Effective trapping of seabed released methane underneath the thermocline. • First observation of a spiral vortex methane plume and marginal turbulences. • Megaplumes appear less efficient in terms of vertical methane transport than previously thought. Abstract First direct evidence for ongoing gas seepage activity on the abandoned well site 22/4b (Northern North Sea, 57°55′ N, 01°38′ E) and discovery of neighboring seepage activity is provided from observations since 2005. A manned submersible dive in 2006 discovered several extraordinary intense seepage sites within a 60 m wide and 20 m deep crater cut into the flat 96 m deep seafloor. Capture and (isotope) chemical analyses of the gas bubbles near the seafloor revealed in situ concentrations of methane between 88 and 90%Vol. with δ13C–CH4 values around −74‰ VPDB, indicating a biogenic origin. Bulk methane concentrations throughout the water column were assessed by 120 Niskin water samples showing up to 400.000 nM CH4 in the crater at depth. In contrast, concentrations above the thermocline were orders of magnitude lower, with a median value of 20 nM. A dye tracer injection into the gas seeps revealed upwelling bubble and water motion with gas plume rise velocities up to ∼1 ms−1 (determined near the seabed). However, the dissolved dye did not pass the thermocline, but returned down to the seabed. Measurements of direct bubble-mediated atmospheric flux revealed low values of 0.7 ± 0.3 kty−1, much less than current state-of-the-art bubble dissolution models would predict for such a strong and upwelling in situ gas bubble flux at shallow water depths (i.e. ∼100 m). Acoustic multibeam water column imaging data indicate a pronounced 200 m lateral intrusion at the thermocline together with high methane concentration at this layer. A partly downward-orientated bubble plume motion is also visible in the acoustic data with potential short-circuiting in accordance to the dye experiment. This observation could partly explain the observed trapping of most of the released gas below the well-established thermocline in the North Sea. Moreover, 3D analyses of the multibeam water column data reveal that the upwelling plume transforms into a spiral expanding vortex while rising through the water column. Such a spiral vortex motion has never been reported before for marine gas seepage and might represent an important process with strong implication on plume dynamics, dissolution behavior, gas escape to the atmosphere, and is considered very important for respective modeling approaches.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2018-06-25
    Beschreibung: The community respiration of 2 tidally dominated cold-water coral (CWC) sites was estimated using the non-invasive eddy correlation (EC) technique. The first site, Mingulay Reef Complex, was a rock ridge located in the Sea of Hebrides off Scotland at a depth of 128 m and the second site, Stjernsund, was a channel-like sound in Northern Norway at a depth of 220 m. Both sites were characterized by the presence of live mounds of the reef framework-forming scleractinian Lophelia pertusa and reef-associated fauna such as sponges, crustaceans and other corals. The measured O2 uptake at the 2 sites varied between 5 and 46 mmol m–2 d–1, mainly depending on the ambient flow characteristics. The average uptake rate estimated from the ~24 h long deployments amounted to 27.8 ± 2.3 mmol m–2 d–1 at Mingulay and 24.8 ± 2.6 mmol m–2 d–1 at Stjernsund (mean ± SE). These rates are 4 to 5 times higher than the global mean for soft sediment communities at comparable depths. The measurements document the importance of CWC communities for local and regional carbon cycling and demonstrate that the EC technique is a valuable tool for assessing rates of benthic O2 uptake in such complex and dynamic settings.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...