GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere  (2)
  • 2020-2023  (2)
Publikationsart
Datenquelle
Schlagwörter
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2022-09-22
    Beschreibung: Simulating sea ice drift and deformation in the Arctic Ocean is still a challenge because of the multiscale interaction of sea ice floes that compose the Arctic Sea ice cover. The Sea Ice Rheology Experiment (SIREx) is a model intercomparison project of the Forum of Arctic Modeling and Observational Synthesis (FAMOS). In SIREx, skill metrics are designed to evaluate different recently suggested approaches for modeling linear kinematic features (LKFs) to provide guidance for modeling small‐scale deformation. These LKFs are narrow bands of localized deformation that can be observed in satellite images and also form in high resolution sea ice simulations. In this contribution, spatial and temporal properties of LKFs are assessed in 36 simulations of state‐of‐the‐art sea ice models and compared to deformation features derived from the RADARSAT Geophysical Processor System. All simulations produce LKFs, but only very few models realistically simulate at least some statistics of LKF properties such as densities, lengths, or growth rates. All SIREx models overestimate the angle of fracture between conjugate pairs of LKFs and LKF lifetimes pointing to inaccurate model physics. The temporal and spatial resolution of a simulation and the spatial resolution of atmospheric boundary condition affect simulated LKFs as much as the model's sea ice rheology and numerics. Only in very high resolution simulations (≤2 km) the concentration and thickness anomalies along LKFs are large enough to affect air‐ice‐ocean interaction processes.
    Beschreibung: Plain Language Summary: Winds and ocean currents continuously move and deform the sea ice cover of the Arctic Ocean. The deformation eventually breaks an initially closed ice cover into many individual floes, piles up floes, and creates open water. The distribution of ice floes and open water between them is important for climate research, because ice reflects more light and energy back to the atmosphere than open water, so that less ice and more open water leads to warmer oceans. Current climate models cannot simulate sea ice as individual floes. Instead, a variety of methods is used to represent the movement and deformation of the sea ice cover. The Sea Ice Rheology Experiment (SIREx) compares these different methods and assesses the deformation of sea ice in 36 numerical simulations. We identify and track deformation features in the ice cover, which are distinct narrow areas where the ice is breaking or piling up. Comparing specific spatial and temporal properties of these features, for example, the different amounts of fractured ice in specific regions, or the duration of individual deformation events, to satellite observations provides information about the realism of the simulations. From this comparison, we can learn how to improve sea ice models for more realistic simulations of sea ice deformation.
    Beschreibung: Key Points: All models simulate linear kinematic features (LKFs), but none accurately reproduces all LKF statistics. Resolved LKFs are affected strongest by spatial and temporal resolution of model grid and atmospheric forcing and rheology. Accurate scaling of deformation rates is a proxy only for realistic LKF numbers but not for any other LKF static.
    Beschreibung: DOE
    Beschreibung: HYCOM NOPP
    Beschreibung: Innovation Fund Denmark and the Horizon 2020 Framework Programme of the European Union
    Beschreibung: National centre for Climate Research, SALIENSEAS, ERA4CS
    Beschreibung: German Helmholtz Climate Initiative REKLIM (Regional Climate Change)
    Beschreibung: Gouvernement du Canada, Natural Sciences and Engineering Research Council of Canada (NSERC) http://dx.doi.org/10.13039/501100000038
    Beschreibung: Environment and Climate Change Canada Grants & Contributions program
    Beschreibung: Office of Naval Research Arctic and Global Prediction program
    Beschreibung: U.S. Department of Energy Regional and Global Model Analysis program
    Beschreibung: National Science Foundation Arctic System Science program
    Beschreibung: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Beschreibung: https://zenodo.org/communities/sirex
    Schlagwort(e): ddc:550.285
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-06-17
    Beschreibung: We examine the historical evolution and projected changes in the hydrography of the deep basin of the Arctic Ocean in 23 climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The comparison between historical simulations and observational climatology shows that the simulated Atlantic Water (AW) layer is too deep and thick in the majority of models, including the multi‐model mean (MMM). Moreover, the halocline is too fresh in the MMM. Overall our findings indicate that there is no obvious improvement in the representation of the Arctic hydrography in CMIP6 compared to CMIP5. The climate change projections reveal that the sub‐Arctic seas are outstanding warming hotspots, causing a strong warming trend in the Arctic AW layer. The MMM temperature increase averaged over the upper 700 m at the end of the 21st century is about 40% and 60% higher in the Arctic Ocean than the global mean in the SSP245 and SSP585 scenarios, respectively. Salinity in the upper few hundred meters is projected to decrease in the Arctic deep basin in the MMM. However, the spread in projected salinity changes is large and the tendency toward stronger halocline in the MMM is not simulated by all the models. The identified biases and projection uncertainties call for a concerted effort for major improvements of coupled climate models.
    Beschreibung: Plain Language Summary: Coupled climate models are crucial tools for understanding and projecting climate change, especially for the Arctic where the climate is changing at unprecedented rates. A cold fresh layer of water (aka halocline) has been protecting sea‐ice at the surface from the warm layer of water (aka Atlantic Water layer) which flows underneath and could potentially accelerate sea ice melting from below. Climate change disturbs this vertical structure by changing the temperature and salinity of the Arctic Ocean (in a process known as Atlantification and Pacification) which may lead to additional sea ice basal melting and accelerate sea ice decline. We examined the simulated temperature and salinity in the Arctic Ocean deep basin in state‐of‐the‐art climate model simulations which provided the basis for the IPCC Assessment Report. We found that although there are persistent inaccuracies in the representation of Arctic temperature and salinity, the Arctic Ocean below 100 m is subject to much stronger warming than the average global ocean. On the other hand, the upper Arctic Ocean salinity is projected to decrease, which on average may strengthen the isolation of sea ice from Atlantic Water heat in the Arctic deep basin area.
    Beschreibung: Key Points: A too deep and thick Arctic Atlantic Water layer continues to be a major issue in contemporary climate models contributing to the CMIP6. The Arctic Ocean below the halocline is subject to much stronger warming than the global mean during the 21st century. The multi‐model mean upper ocean salinity is projected to decrease in the future but with high uncertainty.
    Beschreibung: European union's Horizon 2020 research and innovation programme
    Beschreibung: German Helmholtz climate initiative REKLIM
    Beschreibung: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Beschreibung: https://esgf-data.dkrz.de/projects/esgf-dkrz/
    Beschreibung: http://psc.apl.washington.edu/nonwp_projects/PHC/Data3.html
    Schlagwort(e): ddc:551
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...