GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1420-908X
    Keywords: Silica ; Lung ; Inflammation ; Dexamethasone ; Peroxynitrite ; Chemiluminescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The inhalation of silica has been shown to produce a dramatic inflammatory and toxic response within the lungs of humans and laboratory animals. Currently, no effective treatment exists for workers who may have been exposed to the inhalation of silica. The objective of this study was to develop an animal model in which we could evaluate the effect that anti-inflammatory steroids have on the acute silica-induced pulmonary inflammatory response. Male Fischer 344 rats were pretreated with either dexamethasone (2 mg/kg) or saline vehicle (i.p.) on days 1, 3, and 5. On day 6, the animals from the two groups were then intratracheally instilled with either silica (20 mg/0.5 ml saline vehicle) or saline vehicle (0.5 ml). Twenty-four hours after the instillations in the non-steroid group, significant increases occurred in total protein, total number of cells, neutrophils, and lymphocytes recovered from the lungs of animals treated with silica compared to saline controls. Silica also caused dramatic increases in the luminol-dependent chemiluminescence (LDCL) of lung tissue and bronchoalveolar lavage (BAL) cells. The LDCL reaction was markedly decreased by either superoxide dismutase (SOD) orN-nitro-l-arginine methyl ester hydrochloride (l-NAME). SOD is involved in the enzymatic breakdown of superoxide anion, whilel-NAME, a nitric oxide (NO) synthase inhibitor, prevents the formation of NO. When the superoxide anion and NO react, they form the highly oxidizing substance peroxynitrite. This study then implicates peroxynitrite as an agent which may be involved in the silica-induced oxidant lung injury. When the animals were pretreated with the steroid dexamethasone, there was a complete protection against the biochemical, cellular, and chemiluminescent indices of damage caused by silica. The mechanism in which the steroid protects the lung from damage may be due to the ability of dexamethasone to block the induction of NO synthase. With further study in animals, the anti-inflammatory steroids may be useful in the treatment of silicainduced lung injury.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK . : Blackwell Publishers, Inc.
    Mathematical finance 14 (2004), S. 0 
    ISSN: 1467-9965
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mathematics , Economics
    Notes: The reset right embedded in an option contract is the privilege given to the option holder to reset certain terms in the contract according to specified rules at the moment of shouting, where the time to shout is chosen optimally by the holder. For example, a shout option with strike reset right entitles its holder to choose the time to take ownership of an at-the-money option. This paper develops the theoretical framework of analyzing the optimal shouting policies to be adopted by the holder of an option with reset right on the strike price. It is observed that the optimal shouting policy depends on the time dependent behaviors of the expected discounted value of the at-the-money option received upon shouting. During the time period when the theta of the expected discounted value of the new option received is positive, it is never optimal for the holder to shout at any level of asset value. At those times when the theta is negative, we show that there exists a threshold value for the asset price above which the holder of a reset put option should shout optimally. For the shout floor, we obtain an analytic representation of the price function. For the reset put option, we derive the integral representation of the shouting right premium and analyze the asymptotic behaviors of the optimal shouting boundaries at time close to expiry and infinite time from expiry. We also provide numerical results for the option values and shouting boundaries using the binomial scheme and recursive integration method. Accuracy and run time efficiency of these two numerical schemes are compared.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-18
    Description: The earthquake anomalies associated with the 6 April 2009 Mw 6.3 L’Aquila earthquake have been widely reported. Nevertheless,the reported anomalies have not been so far synergically analyzed to interpret or prove the potential lithosphere–coversphere–atmosphere coupling (LCAC) process. Previous studies on b value (a seismicity parameter from Gutenberg–Richter law) are also insufficient. In this work, the spatiotemporal evolution of several hydrothermal parameters related to the coversphere and atmosphere, including soil moisture, soil temperature, near-surface air temperature, and precipitable water, was comprehensively investigated. Air temperature and atmospheric aerosol were also statistically analyzed in time series with ground observations. An abnormal enhancement of aerosol occurred on 30 March 2009 and thus proved quasi-synchronous anomalies among the hydrothermal parameters from 29 to 31 March in particular places geo-related to tectonic thrusts and local topography. The three-dimensional (3-D) visualization analysis of b value revealed that regional stress accumulated to a high level, particularly in the L’Aquila basin and around regional large thrusts. Finally, the coupling effects of geospheres were discussed, and a conceptual LCAC mode was proposed to interpret the possible mechanisms of the multiple quasi-synchronous anomalies preceding the L’Aquila earthquake. Results indicate that CO2-rich fluids in deep crust might have played a significant role in the local LCAC process.
    Description: Published
    Description: 1859–1880
    Description: 6T. Variazioni delle caratteristiche crostali e precursori
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-07
    Description: Due to the intrinsic side-looking geometry of synthetic aperture radar (SAR), time series interferometric SAR is only able to monitor displacements in line-of-sight (LOS) direction, which limits the accuracy of displacement measurement in landslide monitoring. This is because the LOS displacement is only a three dimensional projection of real displacement of a certain ground object. Targeting at this problem, a precise digital elevation model (DEM) assisted slope displacement retrieval method is proposed and applied to a case study over the high and steep slope of the Dagushan open pit mine. In the case study, the precise DEM generated by laser scanning is first used to minimize topographic residuals in small baseline subsets analysis. Then, the LOS displacements are converted to slope direction with assistance of the precise DEM. By comparing with ground measurements, relative root mean square errors (RMSE) of the estimated slope displacements reach approximately 12-13% for the ascending orbit, and 5.4-9.2% for the descending orbit in our study area. In order to validate the experimental results, comparison with microseism monitoring results is also conducted. Moreover, both results have found that the largest slope displacements occur on the slope part, with elevations varying from -138 m to -210 m, which corresponds to the landslide area. Moreover, there is a certain correlation with precipitation, as revealed by the displacement time series. The outcome of this article shows that rock mass structure, lithology, and precipitation are main factors affecting the stability of high and steep mining slopes.
    Description: Published
    Description: 6674
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: JCR Journal
    Keywords: digital elevation model; high and steep slope; landslide monitoring; open-pit mine; small baseline subsets analysis ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of Atmospheric and Oceanic Technology, AMER METEOROLOGICAL SOC, 34(9), pp. 1985-1999, ISSN: 0739-0572
    Publication Date: 2018-12-01
    Description: Sea surface temperature (SST) data from the Copernicus Marine Environment Monitoring Service are assimilated into a pan-Arctic ice–ocean coupled model using the ensemble-based local singular evolutive interpolated Kalman (LSEIK) filter. This study found that the SST deviation between model hindcasts and independent SST observations is reduced by the assimilation. Compared with model results without data assimilation, the deviation between the model hindcasts and independent SST observations has decreased by up to 0.28degC at the end of summer. The strongest SST improvements are located in the Greenland Sea, the Beaufort Sea, and the Canadian Arctic Archipelago. The SST assimilation also changes the sea ice concentration (SIC). Improvements of the ice concentrations are found in the Canadian Arctic Archipelago, the Beaufort Sea, and the central Arctic basin, while negative effects occur in the west area of the eastern Siberian Sea and the Laptev Sea. Also, sea ice thickness (SIT) benefits from ensemble SST assimilation.A comparison with upward-looking sonar observations reveals that hindcasts of SIT are improved in the Beaufort Sea by assimilating reliable SST observations into light ice areas. This study illustrates the advantages of assimilating SST observations into an ice–ocean coupled model system and suggests that SST assimilation can improve SIT hindcasts regionally during the melting season.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 2004. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 29 (2004): 1264-1279, doi:10.1109/JOE.2004.836997.
    Description: We present analyses of fluctuations seen in acoustic signals transmitted by two 400-Hz sources moored as part of the ASIAEX 2001 South China Sea (SCS) experiment. One source was near the bottom in 350-m deep water 31.3 km offshore from the receiving array, and the other was near the bottom in 135-m deep water 20.6 km alongshore from the array. Time series of signal intensity measured at individual phones of a 16-element vertical line array are analyzed, as well as time series of intensity averaged over the array. Signals were recorded from 2 May to 17 May 2001. Fluctuations were observed at periods ranging from subtidal (days) to the shortest periods resolved with our signaling (10 s). Short-period fluctuations of depth- and time-averaged intensity have scintillation indexes (computed within 3-h long windows) which peak at values near 0.5 during an interval of numerous high-amplitude internal gravity waves, and which are lower during intervals with fewer internal waves. The decorrelation times of the averaged intensity (energy level) are also closely related to internal wave properties. Scintillation indexes computed for unaveraged pulses arriving at individual phones often exceed unity.
    Description: This work was supported by the U.S. Office of Naval Research.
    Keywords: Acoustic intensity ; Fluctuation ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1070723 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-12-06
    Description: Geological disasters are responsible for the loss of human lives and for significant economic and financial damage every year. Considering that these disasters may occur anywhere—both in remote and/or in highly populated areas—and anytime, continuously monitoring areas known to be more prone to geohazards can help to determine preventive or alert actions to safeguard human life, property and businesses. Remote sensing technology—especially satellite-based—can be of help due to its high spatial and temporal coverage. Indeed, data acquired from the most recent satellite missions is considered suitable for a detailed reconstruction of past events but also to continuously monitor sensitive areas on the lookout for potential geohazards. This work aims to apply different techniques and methods for extensive exploitation and analysis of remote sensing data, with special emphasis given to landslide hazard, risk management and disaster prevention. Multi-temporal SAR (Synthetic Aperture Radar) interferometry, SAR tomography, high-resolution image matching and data modelling are used to map out landslides and other geohazards and to also monitor possible hazardous geological activity, addressing different study areas: (i) surface deformation of mountain slopes and glaciers; (ii) land surface displacement; and (iii) subsidence, landslides and ground fissure. Results from both the processing and analysis of a dataset of earth observation (EO) multi-source data support the conclusion that geohazards can be identified, studied and monitored in an effective way using new techniques applied to multi-source EO data. As future work, the aim is threefold: extend this study to sensitive areas located in different countries; monitor structures that have strategic, cultural and/or economical relevance; and resort to artificial intelligence (AI) techniques to be able to analyse the huge amount of data generated by satellite missions and extract useful information in due course
    Description: Published
    Description: 4269
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: geohazards ; landslide detection ; remote sensing ; InSAR
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Centurioni, L. R., Turton, J., Lumpkin, R., Braasch, L., Brassington, G., Chao, Y., Charpentier, E., Chen, Z., Corlett, G., Dohan, K., Donlon, C., Gallage, C., Hormann, V., Ignatov, A., Ingleby, B., Jensen, R., Kelly-Gerreyn, B. A., Koszalka, I. M., Lin, X., Lindstrom, E., Maximenko, N., Merchant, C. J., Minnett, P., O'Carroll, A., Paluszkiewicz, T., Poli, P., Poulain, P., Reverdin, G., Sun, X., Swail, V., Thurston, S., Wu, L., Yu, L., Wang, B., & Zhang, D. Global in situ observations of essential climate and ocean variables at the air-sea interface. Frontiers in Marine Science, 6, (2019): 419, doi: 10.3389/fmars.2019.00419.
    Description: The air–sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air–sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air–sea fluxes) to further our understanding and parameterization of air–sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsored by the Intergovernmental Oceanographic Commission of UNESCO, IOC–UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored.
    Description: LC, LB, and VH were supported by NOAA grant NA15OAR4320071 and ONR grant N00014-17-1-2517. RL was supported by NOAA/AOML and NOAA’s Ocean Observation and Monitoring Division. NM was partly supported by NASA grant NNX17AH43G. IK was supported by the Nordic Seas Eddy Exchanges (NorSEE) funded by the Norwegian Research Council (Grant 221780). DZ was partly funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. RJ was supported by the USACE’s Civil Works 096×3123.
    Keywords: Global in situ observations ; Air-sea interface ; Essential climate and ocean variables ; Climate variability and change ; Weather forecasting ; SVP drifters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124, (2019): 8439-8454, doi: 10.1029/2019JC015637.
    Description: An Iranian tanker with 136,000 tons of natural gas condensates collided with a freighter in the East China Sea in January 2018 and, after drifting ablaze for 8 days and over 200 km, capsized on the edge of the shelf near the Kuroshio Current. Different from the crude oil, the condensates consist of hydrocarbons that have relatively high solubility in seawater. We postulate that the leakage from the remaining condensate cargo at 110 m depth may result in a bottom layer of condensate‐enriched water in the vicinity of the resting tanker. A model is constructed in this study to simulate the dispersion of contaminated water through the processes of oceanic advection, diffusion, biodegradation, and volatilization. It is found that the scope and magnitude of the dispersion are most sensitive to the biodegradation. Even though the biodegradation time scale depends on several factors that are not well quantified in this region, using any value within the estimated range from a previous study results in significant contamination in the broad area. The dispersion is particularly effective in this incident because the tanker capsized near the Kuroshio Current—a fast‐moving western boundary current. The Kuroshio acts as a fast conduit to spread the contaminant to the east coast of Japan and the interior Pacific Ocean. In addition, we identify that the Tsushima Warm Current, a perennial flow into the Japan Sea, is the second major conduit for spreading the polluted water. This study indicates that dissolved hydrocarbons are the main environmental risk for maritime spills of natural gas condensates.
    Description: Chris Reddy at WHOI provided invaluable guidance at the beginning of this study. Jian Zhao at UMD participated in some early discussions and helped the model development. Lei Chen has been financially supported by China Scholarship Council to study at WHOI for 2 years as a WHOI guest student. Jiayan Yang's participation in this study has been supported by the Woods Hole Oceanographic Institution‐Ocean University of China (WHOI‐OUC) Collaborative Initiative and the W. Van Alan Clark Chair for Excellence in Oceanography from WHOI. This work is supported by National Natural Science Foundation of China major project (41490640, 41490643). The daily oceanic velocity field used in the model is Global Ocean Sea Physical Analysis and Forecasting Products distributed by CMEMS, which can be available online (http://marine.copernicus.eu/services‐portfolio/access‐to‐products/?option=com_csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024). The model output data are available freely from the database of ZENODO (https://zenodo.org/record/3405388#.XXk‐5yhKhPY).
    Description: 2020-05-11
    Keywords: Maritime spill ; Natural gas condensates ; Bio-degradation ; East China and Japan Seas ; Kuroshio Current ; Tsushima Warm Current
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gu, S., Liu, Z., Oppo, D. W., Lynch-Stieglitz, J., Jahn, A., Zhang, J., Lindsay, K., & Wu, L. Remineralization dominating the δ13 C decrease in the mid-depth Atlantic during the last deglaciation. Earth and Planetary Science Letters, 571, (2021): 117106, https://doi.org/10.1016/j.epsl.2021.117106.
    Description: δ 13 C records from the mid-depth Atlantic show a pronounced decrease during the Heinrich Stadial 1 (HS1), a deglacial episode of dramatically weakened Atlantic Meridional Ocean Circulation (AMOC). Proposed explanations for this mid-depth decrease include a greater fraction of δ 13 C -depleted southern sourced water (SSW), a δ 13 C decrease in the North Atlantic Deep Water (NADW) end-member, and accumulation of the respired organic carbon. However, the relative importance of these proposed mechanisms cannot be quantitatively constrained from current available observations alone. Here we diagnose the individual contributions to the deglacial Atlantic mid-depth δ 13 C change from these mechanisms using a transient simulation with carbon isotopes and idealized tracers. We find that although the fraction of the low- δ 13 C SSW increases in response to a weaker AMOC during HS1, the water mass mixture change only plays a minor role in the mid-depth Atlantic δ 13 C decrease. Instead, increased remineralization due to the AMOC-induced mid-depth ocean ventilation decrease is the dominant cause. In this study, we differentiate between the deep end-members, which are assigned to deep water regions used in previous paleoceanography studies, and the surface end-members, which are from the near-surface water defined from the physical origin of deep water masses. We find that the deep NADW end-member includes additional remineralized material accumulated when sinking from the surface (surface NADW end-member). Therefore, the surface end-members should be used in diagnosing mechanisms of changes. Furthermore, our results suggest that remineralization in the surface end-member is more critical than the remineralization along the transport pathway from the near-surface formation region to the deep ocean, especially during the early deglaciation.
    Description: This work is supported by US National Science Foundation (NSF) P2C2 projects (1401778, 1401802, and 1566432), and the National Science Foundation of China No. 41630527. S.G. is supported by Shanghai Pujiang program.
    Keywords: δ13 C ; Water mass composition ; Remineralization ; End-member ; HS1
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...