GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The international multi-ship expedition ARCTIC'91 was able to collect a seismic transect between the Morris Jesup Rise and the Yermak Plateau. These conjugate plateau structures in the south-western part of the Eurasian Basin bound one of the slowest mid-oceanic spreading ridges in the world, the Gakkel Ridge. The seismic data reveal a sedimentary cover that is thin relative to the age of the oceanic crust at 83°N, 10°E and 85°N, 15°W. Close to the plateaus, thicker sequences are evident (Morris Jesup Rise, 500 m; Yermak Plateau, 1500 m). The seismic lines on the Morris Jesup Rise reveal only a thin sedimentary cover of 0.2 s TWT. In contrast, a layer with a thickness of almost 0.9 s TWT (1300 m) was found on the northernmost tip of the Yermak Plateau. The topography of the oceanic basement is very rough along the seismic lines, as could be expected at a slow spreading ridge. Depth variations of more than 1000 m are typical. Hydrosweep swath mapping provides the first detailed 3-D image from the Arctic mid-ocean ridge system at 87°N, 60°E and 84°N, 0°.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Deep-water formation in the northern North Atlantic Ocean and the Arctic Ocean is a key driver of the global thermohaline circulation and hence also of global climate. Deciphering the history of the circulation regime in the Arctic Ocean has long been prevented by the lack of data from cores ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC3Proceedings of the II PAST Gateways - International converence and workshop, Trieste, Italy, 2014-05-19-2014-05-23
    Publication Date: 2014-06-23
    Description: The Greenland-Scotland Ridge (GSR) is a crucial hydrographic barrier for the exchange of water masses between the Polar Seas and the North Atlantic Ocean. Through the Miocene (5-23 Myrs; Myrs=million years ago), the Greenland-Scotland Ridge deepened at 18 Myrs and 15.5 Myrs, and again at 12.5 Myrs by changes of the Icelandic mantle plume activity, which has direct consequences for the evolution of Northern Component Water. In a sensitivity study, we investigate the effect of GSR depth variations with a global atmosphere-ocean-vegetation General Circulation Model. Oceanic characteristics of the quasi-enclosed Nordic Seas and Arctic Ocean are analyzed, as well as the critical depth threshold for the evolution of the North Atlantic Current and the East Greenland Current is examined and linked to changes in global ocean circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3EGU General Assembly Conference Abstracts, Vienna, 2014-04-27-2014-03-2016, pp. 14294
    Publication Date: 2014-07-22
    Description: Continental breakup is commonly preceded or accompanied by massive volcanism and deposition of flood basalts. The large volumes of magma are thought to originate from hot upwelling mantle plumes arriving at the lithosphere. The following plume conduit often leaves a trail in form of volcanic islands or aseismic ridges on the newly created oceanic crust. Due to this correlation in space and time between plume-derived structures and continental breakup, plumes are considered to have a triggering effect or even cause continental breakups. The South Atlantic is a classical example for this model including the Parana (South America) and Etendeka (Africa) flood basalts as well as the aseismic ridges Rio Grande Rise and Walvis Ridge on both conjugate margins. The Walvis Ridge connects the Etendeka flood basalts with the active volcanic islands of Tristan da Cunha, the current hotspot position. To investigate the modification of the continent ocean transition (COT) by the arriving plume head, a large geophysical on- and offshore experiment was conducted in 2011 at the intersection of Walvis Ridge with the African continent. We present two P-wave velocity models of the deep crustal structure derived from seismic refraction data. One profile crosses the ridge ~500km away from the coastline, while the other one extends along the ridge and continues onshore. 27 ocean bottom stations (OBS, spacing 13 km) were deployed for the perpendicular profile, 28 OBS, 50 land stations and 8 dynamite shots were used for the longitudinal profile. Crustal velocities beneath Walvis Ridge range between 5.5 km/s and 7.0 km/s, which are typical velocities for oceanic crust. The thickness, however, is approximately three times than normal, 17 km in the western part and increasing to 22 km towards the continent. The COT is characterized by 30 km thick crust with a high velocity lower crustal body (HVLCB) with seismic velocities up to 7.5 km/s. The western boundary of the HVLCB is at a similar longitude as similar lower crustal bodies found more south. Towards the east the HVLCB terminates against the ~40 km thick crust of the Kaoko fold belt. Here, the variation of seismic velocities indicate that hot material intruded the continental crust during the initial rifting stage. However, beyond this relatively sharp boundary (40 km wide), the remaining continental crust seems not be affected by the hot material. The second line some 500 km west of the coast indicates that the Walvis Ridge might be broader than its topographic expression. The seismic velocities are similar to those closer to the coast, but the HVLCB is thinner.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC3SAMPLE Colloquium 2014, Bremerhaven, 2014-06-03-2014-06-06
    Publication Date: 2014-07-22
    Description: Walvis Ridge is an aseismic oceanic ridge stretching from the African continent to the Mid Atlantic Ridge, representing the trail of the Tristan da Cunha hotspot. To estimate the influence of the plume, a large-scale geophysical experiment was conducted in 2011 and the P-wave velocity models derived from seismic refraction data are presented here. A 480 km long profile consisting of 27 ocean bottom stations crosses the ridge approximately 600 km west of the coast, while another profile is located parallel to the ridge along the crest with an extension on the continent. 28 ocean bottom stations, 50 land receiver and 8 dynamite shots are distributed along the total length of 730 km. Crustal velocities beneath Walvis Ridge range between 5.5 km/s and 7.0 km/s, which are typical velocities for oceanic crust. The thickness, however, is approximately three times larger than normal: 17 km in the western part increasing to 22 km towards the continent. The continent ocean transition is characterized by 30 km thick crust with a high velocity body (HVB) in the lower crust and seismic velocities up to 7.5 km/s. The western boundary of the HVB is at a similar longitude as HVBs found more south. But different from those, the eastern boundary lies well within the continental domain, at the ~40 km thick crust of the Kaoko fold belt. Here, the variation of seismic velocities indicates that hot material intruded the continental crust during the initial rifting stage. However, beyond this relatively sharp boundary (40 km wide), the remaining continental crust seems not to be affected. The cross-profile indicates that Walvis Ridge might be broader than its topographic expression and that the northward lying seamounts are part of the ridge. A HVB can only be found at the northern flank of the ridge, but not at its base.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-22
    Description: Walvis Ridge is a prominent aseismic ridge in the South Atlantic, stretching across the whole oceanic crust from the African continent to the Mid Atlantic Ridge, representing the trail of the Tristan da Cunha hotspot. This proposed deep mantle plume emplaced the Parana flood basalts in South America and the Etendeka flood basalts on the African continent, prior and during the breakup of Gondwana. This temporal proximity indicates a causal relationship between the arriving plume head and the continental breakup. To estimate the influence of the plume, a large-scale geophysical experiment was conducted in 2011. The P-wave velocity models derived from seismic refraction data are presented here. A 480 km long profile consisting of 27 ocean bottom stations crosses the ridge approximately 600 km west of the coast, while a second profile is located ridge-parallel along its crest with an extension on the continent. 28 ocean bottom stations, 50 land receiver and 8 dynamite shots are distributed along the total length of 730 km. Crustal velocities beneath Walvis Ridge range between 5.5 km/s and 7.0 km/s, which are typical velocities for oceanic crust. The crustal thickness, however, is approximately three times larger than of normal oceanic crust: 17 km in the western part increasing to 22 km towards the continent. The continent ocean transition is characterized by 30 km thick crust with a high velocity body (HVB) in the lower crust and seismic velocities up to 7.5 km/s. The western boundary of the HVB is at a similar longitude as HVBs observed south of Walvis Ridge. But different from those, the eastern boundary lies well within the continental domain, at the 40 km thick crust of the Kaoko fold belt. Here, the variation of seismic velocities indicates that hot material intruded the continental crust during the initial rifting stage. However, beyond this relatively sharp boundary (40 km wide), the remaining continental crust seems unaffected by intrusions. The cross-profile indicates that Walvis Ridge might be broader than its topographic expression and that the northward lying seamounts are part of the ridge. A HVB can only be found at the northern flank of the ridge, but not at its base. We conclude, that the postulated arriving plume head did not modify the continental crust on a large scale, but was a rather regional anomaly.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3Workshop ARK-XXV/3, BGR Hannover, 2014-04-23-2014-04-23
    Publication Date: 2016-01-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-16
    Description: Petroleum systems located at passive continental margins received increasing attention in the last decade mainly because of deep- and ultra‐deep-water hydrocarbon exploration and production. The high risks associated with these settings originate mainly from the poor understanding of inherent geodynamic processes. The new priority program SAMPLE (South Atlantic Margin Processes and Links with onshore Evolution), established by the German Science Foundation in 2009 for a total duration of 6 years, addresses a number of open questions related to continental breakup and post‐breakup evolution of passive continental margins. 27 sub‐projects take advantage of the exceptional conditions of the South Atlantic as a prime “Geo‐archive.” The regional focus is set on the conjugate margins located east of Brazil and Argentina on one side and west of Angola, Namibia and South Africa on the other (Figure 1) as well as on the Walvis Ridge and the present‐day hotspot of Tristan da Cunha. The economic relevance of the program is demonstrated by support from several petroleum companies, but the main goal is research on fundamental processes behind the evolution of passive continental margins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Flanders Marine Institute (VLIZ), Oostende, Belgium
    In:  EPIC32nd Deep-Water Circulation Congress: 'The Contourite Log-Book', Ghent, Belgium, 2014-09-10-2014-09-12Book of Abstracts, 2nd Deep-Water Circulation Congress: The Contourite Log-book, VLIZ Special Publication 69, Flanders Marine Institute (VLIZ), Oostende, Belgium, 152 p., ISBN: 1377-0950
    Publication Date: 2014-10-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...