GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Padova University Press
    In:  EPIC3Perspectives on Evolutionary and Developmental Biology, Padova, Italy, Padova University Press, pp. 283-306, ISBN: 978-88-6938-140-9
    Publication Date: 2019-02-21
    Description: We discuss several forms of developmental plasticity exhibited by marine crabs, in the context of ecological developmental biology (EcoDevo), and seek to motivate research in EcoDevo by addressing some key questions of the field. We summarise the diversity of plastic developmental responses exhibited during crab development, identify gaps in knowledge and highlight the importance of EcoDevo research in the light of current climate change. Marine crabs show a suite of plastic responses including transgenerational plasticity (e.g., maternal effects), as well as developmental plasticity both within the larval phase and across the larval-juvenile life history transition (e.g., latent effects). Given the potential ecological and evolutionary consequences we think that there is much potential for research in the field of EcoDevo using brachyuran crabs as model organisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-02
    Description: Understanding organismal responses to environmental drivers is relevant to predict species capacities to respond to climate change. However, the scarce information available on intraspecific variation in the responses oversimplifies our view of the actual species capacities. We studied intraspecific variation in survival and larval development of a marine coastal invertebrate (shore crab Carcinus maenas) in response to two key environmental drivers (temperature and salinity) characterising coastal habitats. On average, survival of early larval stages (up to zoea IV) exhibited an antagonistic response by which negative effects of low salinity were mitigated at increased temperatures. Such response would be adaptive for species inhabiting coastal regions of freshwater influence under summer conditions and moderate warming. Average responses of developmental time were also antagonistic and may be categorised as a form of thermal mitigation of osmotic stress. The capacity for thermal mitigation of low-salinity stress varied among larvae produced by different females. For survival in particular, deviations did not only consist of variations in the magnitude of the mitigation effect; instead, the range of responses varied from strong effects to no effects of salinity across the thermal range tested. Quantifying intraspecific variation of such capacity is a critical step in understanding responses to climate change: it points towards either an important potential for selection or a critical role of environmental change, operating in the parental environment and leading to stress responses in larvae.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-03-06
    Description: We studied the role of oceanographic conditions and life history strategies on recovery after extinction in a metapopulation of marine organisms dispersing as pelagic larvae. We combined an age‐structured model with scenarios defined by realistic oceanographic conditions and species distribution along the Irish Sea coast (North Europe). Species life history strategies were modeled combining the dispersal behaviors with two levels of fecundity. Recovery times were quantified after simulating extinction in four regions. Two alternative strategies (high fecundity or larval tidal transport) led to short recovery times, irrespective of the effects of other drivers. Other strategies and low larval survival exacerbated the effects of oceanographic conditions on recovery times: longer times were associated with for example the presence of frontal zones isolating regions of extinction. Recovery times were well explained by the connectivity of each focal population with those located outside the area of extinction (which was higher in the so‐called small world topologies), but not by subsidies (direct connections with populations located nearby). Our work highlights the complexities involved in population recovery: specific trait combinations may blur the effects of the habitat matrix on recovery times; K‐strategists (i.e., with low fecundities) may achieve quick recovery if they possess the appropriate dispersal traits. High larval mortality can exacerbate the effect of oceanographic conditions and lead to heterogeneity in recovery times. Overall, processes driving whole network topologies rather than conditions surrounding local populations are the key to understand patterns of recovery.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-25
    Description: In coastal areas with estuarine influence, exposure to hypo-osmotic conditions may affect larval survival, development and growth. Most knowledge about effects of reduced salinity on coastal organisms is based on keeping individuals under constant conditions in the laboratory. By contrast, little is known about the effects of more realistic situations where organisms are exposed to low salinity over short time scales. Such environmental short-term fluctuations are expected to increase due to climate change. Here, we experimentally evaluated the sublethal effects of both short-term and continuous exposure to moderately reduced salinities (salinity 20 and 25; compared to seawater, salinity 32) in larvae of European lobster Homarus gammarus. Total body dry mass and biochemical composition (measured as: protein and lipid contents) were measured as response variables in Mysis stages I to III. Short-term effects of low salinity were quantified in a group of larvae kept in seawater from hatching until the time of transfer to the test salinities. After ca. 40 % of each moult cycle in seawater (determined in preliminary experiments for Mysis I, II and III), larvae were assigned to a seawater control or reduced salinities lasting for 16 h (i.e. until ca. 50 % of the time spent within the moulting cycle). Effects of continuous exposure to low salinity were quantified when larvae were exposed to the different salinities from hatching, until they reached ca. 50 % of the successive moulting stage. Surprisingly, in the Mysis II and III stages, short-term exposure to low salinity had much stronger effects on accumulation of reserves than the continuous exposure. Such effects were manifested mostly as limited accumulation, or even losses, in the lipid content as compared to reductions in the amount of protein accumulated. The most sensitive stage to exposure to low salinity was the Mysis III; by contrast in Mysis I such effects were relative weak (not always significant). Chronic exposure to low salinity also led to an increase in developmental time especially at the advanced stages. Our results highlight the importance of quantifying effects of environmental fluctuations at different time scales in order to better understand how organisms cope with realistic environmental change in the coastal zones. For H. gammarus, our results suggest that larvae respond adaptively to low salinity by maintaining protein levels at expenses of reductions in lipid accumulation and by extending the developmental time, but the capacity to elicit a fully compensatory response varies ontogenetically.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-25
    Description: Developing physiological mechanistic models to predict species’ responses to climate-driven environmental variables remains a key endeavor in ecology. Such approaches are challenging, because they require linking physiological processes with fitness and contraction or expansion in species’ distributions. We explore those links for coastal marine species, occurring in regions of freshwater influence (ROFIs) and exposed to changes in temperature and salinity. First, we evaluated the effect of temperature on hemolymph osmolality and on the expression of genes relevant for osmoregulation in larvae of the shore crab Carcinus maenas. We then discuss and develop a hypothetical model linking osmoregulation, fitness, and species expansion/contraction toward or away from ROFIs. In C. maenas, high temperature led to a threefold increase in the capacity to osmoregulate in the first and last larval stages (i.e., those more likely to experience low salinities). This result matched the known pattern of survival for larval stages where the negative effect of low salinity on survival is mitigated at high temperatures (abbreviated as TMLS). Because gene expression levels did not change at low salinity nor at high temperatures, we hypothesize that the increase in osmoregulatory capacity (OC) at high temperature should involve post-translational processes. Further analysis of data suggested that TMLS occurs in C. maenas larvae due to the combination of increased osmoregulation (a physiological mechanism) and a reduced developmental period (a phenological mechanisms) when exposed to high temperatures. Based on information from the literature, we propose a model for C. maenas and other coastal species showing the contribution of osmoregulation and phenological mechanisms toward changes in range distribution under coastal warming. In species where the OC increases with temperature (e.g., C. maenas larvae), osmoregulation should contribute toward expansion if temperature increases; by contrast in those species where osmoregulation is weaker at high temperature, the contribution should be toward range contraction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Science of The Total Environment, ELSEVIER SCIENCE BV, 707, ISSN: 0048-9697
    Publication Date: 2020-02-25
    Description: An increase in human Vibrio spp. infections has been linked to climate change related events, in particular to seawater warming and heatwaves. However, there is a distinct lack of research of pathogenic Vibrio spp. occurrences in the temperate North Sea, one of the fastest warming seas globally. Particularly in the German Bight, Vibrio investigations are still scarce. This study focuses on the spatio-temporal quantification and pathogenic characterization of V. parahaemolyticus, V. vulnificus and V. cholerae over the course of 14 months. Species-specific MPN-PCR (Most probable number – polymerase chain reaction) conducted on selectively enriched surface water samples revealed seasonal patterns of all three species with increased abundances during summer months. The extended period of warm seawater coincided with prolonged Vibrio spp. occurrences in the German Bight. Temperature and nitrite were the factors explaining variations in Vibrio spp. abundances after generalized additive mixed models. The specific detection of pathogenic markers via PCR revealed trh-positive V. parahaemolyticus, pathogenic V. vulnificus (nanA, manIIA, PRXII) and V. cholerae serotype O139 presence. Additionally, spatio-temporally varying virulence profiles of V. cholerae with multiple accessory virulence-associated genes, such as the El Tor variant hemolysin (hlyAET), acyltransferase of the repeats-in-toxin cluster (rtxC), Vibrio 7th pandemic island II (VSP-II), Type III Secretion System (TTSS) and the Cholix Toxin (chxA) were detected. Overall, this study highlights that environmental human pathogenic Vibrio spp. comprise a reservoir of virulence-associated genes in the German Bight, especially in estuarine regions. Due to their known vast genetic plasticity, we point to the possible emergence of highly pathogenic V. cholerae strains. Particularly, the presence of V. cholerae serotype O139 is unusual and needs urgent continuous surveillance. Given the predictions of further warming and more frequent heatwave events, human pathogenic Vibrio spp. should be seriously considered as a developing risk to human health in the German Bight.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3Ecography, 42(4), pp. 643-657, ISSN: 0906-7590
    Publication Date: 2020-05-19
    Description: Dispersal and migration can be important drivers of species distributions. Because the paths followed by individuals of many species are curvilinear, spatial statistical models based on rectilinear coordinates systems would fail to predict population connectivity or the ecological consequences of migration or species invasions. I propose that we view migration/dispersal as if organisms were moving along curvilinear geometrical objects called smooth manifolds. In that view, the curvilinear pathways become the ‘shortest realised paths’ arising from the necessity to minimise mortality risks and energy costs. One can then define curvilinear coordinate systems on such manifolds. I describe a procedure to incorporate manifolds and define appropriate coordinate systems, with focus on trajectories (1D manifolds), as parts of mechanistic ecological models. I show how a statistical method, known as ‘manifold learning’, enables one to define the manifold and the appropriate coordinate systems needed to calculate population connectivity or study the effects of migrations (e.g. in aquatic invertebrates, fish, insects and birds). This approach may help in the design of networks of protected areas, in studying the consequences of invasion, range expansions, or transfer of parasites/diseases. Overall, a geometrical view to animal movement gives a novel perspective to the understanding of the ecological role of dispersal and migration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Functional Ecology, WILEY-BLACKWELL PUBLISHING, ISSN: 0269-8463
    Publication Date: 2020-06-15
    Description: 1.In species with complex life cycles, increased temperatures combined with food limitation may be critical, if high growth rates characterise the larval development. 2.We used the crab Carcinus maenas as a model species in order to determine how temperature modifies the effect of food limitation on larval survival and on functional traits at metamorphosis (developmental time, body mass, growth rates, carbon and nitrogen content). 3.We followed the approach of models of metamorphosis integrating responses of body mass and developmental time. We also evaluated if increased temperature would lead to (1) decreased body mass (as expected from the so-called temperature-size rule) and (2) exponential reductions in developmental time (as expected from metabolic theories of ecology). 4.Larvae produced by four females were reared separately from hatching to metamorphosis to the megalopa at two food conditions (ad libitum and food limitation), and at four temperatures covering the range experienced in the field (〈20°C) and those expected from climate change (〉20°C). 5.Under ad libitum food conditions, responses in larvae from most females were not consistent with the temperature-size rule nor with expectations from the metabolic theory of ecology. 6.At low temperatures (〈20°C), body mass and nitrogen content at metamorphosis were little affected by food limitation while effects on carbon content were small. Increased developmental time partially or fully compensated for reduced growth rates. We interpreted this response as adaptive, as minimising fitness costs associated to reduced body mass. In larvae from three females food limitation resulted in small reductions in larval survival. 7.High temperatures (〉20°C) exacerbated the effect of food limitation on mortality in larvae from three females. Developmental time was longer and larvae metamorphosed with reduced body mass, carbon and nitrogen content. Thus, compensatory responses failed and multiple fitness costs should be expected in individuals facing food limitation at increased temperatures. 8.We propose that integrative studies of traits at metamorphosis could be a basis to develop a mechanistic understanding of how species with complex life cycles will respond to climate change. Such models could eventually include hormonal and metabolic regulation of development as drivers of responses to environmental change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-01-08
    Description: Intertidal serrated wrack Fucus serratus is common throughout the temperate N-Atlantic and plays an important role as a bioengineering species structuring lower intertidal communities. Several studies have addressed the impact of Fucus cover and its disturbance on species richness, diversity and succession of associated species in manipulative experiments. However, natural catastrophic events have scarcely been followed on a spatial mesoscale. We analyzed a 10-yrs time series on 140 permanent geo-referenced plots in the intertidal zone at the island of Helgoland (North Sea) covering an area of approx. 100 x 100 m. Samples were taken biannually in winter and summer. We describe the general intra- and interannual dynamics of F. serratus coverage and associated seaweed and mollusk species. The spatio-temporal extent and percentage coverage of F. serratus displayed a regular intra-annual pattern with lower coverage in winter than in summer whereas the spatial extent of the zone remained stable over many years. In winter 2006/2007 there was considerable loss of cover (from 100% to ≤30%), probably caused by several successive strong autumn and winter storms. Recovery of the F. serratus population required three vegetation periods. We will present data on the temporal co-variation of associated seaweed and mollusk species richness, evenness and diversity before and after the disturbance and discuss differences between investigations at different spatial scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-01-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/zip
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...