GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Pseudomonas putida  (1)
  • Supplementation  (1)
Document type
Keywords
Publisher
Years
  • 1
    ISSN: 1432-072X
    Keywords: Phenol ; 4-Chlorophenol ; p-Cresol ; Fatty acids ; Lipids ; Supplementation ; Tolerance ; Membrane ; E. coli
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the presence of sublethal concentrations of phenol, 4-chlorophenol, and p-cresol in the growth medium, cells of Escherichia coli modified the fatty acid composition of their lipids. The result of these changes was an increase in the degree of saturation of lipids probably in order to compensate an increase of fluidity of the membrane induced by the phenols. Supplementation of the growth medium with saturated fatty acids could also enhance the degree of lipid saturation due to the incorporation of the acyl chains in the phospholipids. At the same time the growth of cells was less inhibited than in unsupplemented cells. The increase of tolerance of cells by manipulating the lipid composition indicates that the membrane structure plays a crucial role in the mode of action of phenols.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 162 (1994), S. 120-125 
    ISSN: 1432-072X
    Keywords: Pseudomonas putida ; trans Unsaturated fatty acids ; Isomerization ; Cell membrane ; Fatty acid biosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The phospholipids of Pseudomonas putida P8 contain monounsaturated fatty acids in the cis and trans configuration. Cells of this phenol-degrading bacterium change the proportions of these isomers in response to the addition or elimination of a membrane active compound such as 4-chlorophenol. This study undoubtedly reveals that the cis unsaturated fatty acids are directly converted into trans isomers without involvement of de novo synthesis of fatty acids. Oleic acid, which cannot be synthesized by this bacterium, was incorporated as a cis unsaturated fatty acid marker in the membrane lipids of growing cells. The conversion of this fatty acid into the corresponding trans isomer was demonstrated by gas chromatographic-mass spectrometric analysis and use of 14C-labeled oleic acid. Separation and isolation of the cellular membranes showed that the fatty acid isomerase is located in the cytoplasmic membrane of P. putida P8.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...