GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Methanobacterium thermoautotrophicum ; Potassium accumulation ; Membrane potential ; pH gradient ; Energy coupling ; Active transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cultures of Methanobacterium thermoautotrophicum (Marburg) growing on media low in potassium accumulated the cation up to a maximal concentration gradient ([K+]intracellular/[K+]extracellular) of approximately 50,000-fold. Under these conditions, the membrane potential was determined by measuring the equilibrium distribution of the lipophilic cation (14C) tetraphenylphosphonium (TPP+). This cation was accumulated by the cells 350-to 1,000-fold corresponding to a membrane potential (inside negative) of 170–200 mV. The pH gradient, as measured by equilibrium distribution of the weak acid, benzoic acid, was found to be lower than 0.1 pH units (extracellular pH=6.8). The addition of valinomycin (0.5–1 nmol/mg cells) to the culture reduced the maximal concentration gradient of potassium from 50,000-to approximately 500-fold, without changing the membrane potential. After dissipation of the membrane potential by the addition of 12C-TTP+ (2 μmol/mg cells) or tetrachlorosalicylanilide (3 nmol/mg cells), a rapid and complete efflux of potassium was observed. These data indicate that potassium accumulation in the absence of valinomycin is not in equilibrium with the membrane potential. It is concluded that at low extracellular K+ concentrations potassium is not accumulated by M. thermoautotrophicum via an electrogenic uniport mechanism.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 142 (1985), S. 354-361 
    ISSN: 1432-072X
    Keywords: Methanobacterium thermoautotrophicum ; Na+ dependent methanogenesis ; Na+/H+ antiporter ; pH regulation ; Membrane potential ; pH gradient
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methane formation from H2/CO2 by methanogenic bacteria is dependent on Na+ ions. In this communication it is shown with Methanobacterium thermoautotrophicum that a Na+/H+ antiporter plays a role in methane formation from H2 and CO2 and in the regulation of the ΔpH. This is based on the following findings: (i) Li+ ions, an alternative substrate of Na+/H+ antiporters, could replace Na+ in stimulating methanogenesis from H2 and CO2. (ii) Harmaline, amiloride, and NH 4 + , which are inhibitors of Na+/H+ antiporters, inhibited methanogenesis; inhibition was competitive to Na+ or Li+. (iii) Addition of Na+ or Li+ rather than of other cations to cell suspensions resulted in an acidification of the suspension medium. The rate and extent of acidification was affected by those inhibitors, which inhibited methanogenesis competitively to Na+ or Li. (iv) During methane formation from H2 and CO2 the generation of a ΔpH (inside alkaline) was dependent on the presence of Na+ or Li+. However, methanogenesis was also dependent on Na+ or Li+ under conditions where ΔpH was zero. (v) ATP synthesis driven by an electrogenic potassium efflux was significantly enhanced in the presence of Na+ or Li+. Na+ or Li+ were shown to prevent acidification of the cytoplasm under these conditions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 127 (1980), S. 59-65 
    ISSN: 1432-072X
    Keywords: Methanobacterium thermoautotrophicum ; Growth rates ; Growth yields ; Nickel ; Maintenance coefficient ; Interspecies hydrogen transfer ; Saturation constants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methanobacterium thermoautotrophicum was grown on a mineral salts medium in a fermenter gassed with H2 and CO2, which were the sole carbon and energy sources. Under the conditions used the bacterium grew exponentially. The dependence of the growth rate (μ) on the concentration of H2 and CO2 in the incoming gas and the dependence of the growth yield ( $$Y_{CH_4 }$$ ) on the growth rate were determined at pH 7 (the pH optimum) and 65° C (the temperature optimum). The curves relating growth rate to the H2 and CO2 concentration were hyperbolic. From reciprocal plots apparent K s values for H2 and CO2 and μmax were obtained: app. $$K_{{\text{H}}_{\text{2}} }$$ = 20%; app. $$K_{{\text{CO}}_{\text{2}} }$$ = 11%; μ = 0.69 h-1; t δ (max)=1 h. $$Y_{CH_4 }$$ was 1.6 g mol-1 and almost independent of the growth rate, when the rate of methane formation was not limited by the supply of either H2 or CO2. The yield increased to near 3 g mol-1 when H2 or CO2 were limiting. These findings indicate that methane formation and growth are less tightly coupled at high concentrations of H2 or CO2 in the medium than at low concentrations. The physiological significance of these findings is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 123 (1979), S. 105-107 
    ISSN: 1432-072X
    Keywords: Nickel ; Cobalt ; Molybdenum ; Iron ; Methanobacterium thermoautotrophicum ; Trace elements
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Growth of Methanobacterium thermoautotrophicum on H2 and CO2 as sole energy and carbon sources was found to be dependent on Ni, Co, and Mo. At low concentrations of Ni (〈100 nM), Co (〈10 nM) and Mo (〈10 nM) the amount of cells formed was roughly proportional to the amount of transition metal added to the medium; for the formation of 1 g cells (dry weight) approximately 150 nmol NiCl2, 20 nmol CoCl2 and 20 nmol Na2MoO4 were required. A dependence of growth on Cu, Mn, Zn, Ca, Al, and B could not be demonstrated. Conditions are described under which the bacterium grew exponentially with a doubling time of 1.8 h up to a cell density of 2 g cells (dry weight)/1.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 137 (1984), S. 362-365 
    ISSN: 1432-072X
    Keywords: Coenzyme F420 ; Flavin biosynthesis ; Deazaflavins ; Guanine assimilation ; Methanogenic bacteria ; Methanobacterium thermoautotrophicum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Coenzyme F420 is a 8-hydroxy-5-deazaflavin present in methanogenic bacteria. We have investigated whether the pyrimidine ring of the deazaflavin originates from guanine as in flavin biosynthesis, in which the pyrimidine ring of guanine is conserved. For this purpose the incorporation of [2-14C]guanine and of [8-14C]guanine into F420 by growing cultures of Methanobacterium thermoautotrophicum was studied. Only in the case of [2-14C]guanine did F420 become labeled. The specific radioactivity of the deazaflavin and of guanine isolated from nucleic acids of [2-14C]guanine grown cells were identical. This finding suggests that the pyrimidine ring of the deazaflavin and of flavins are synthesized by the same pathway. F420 did not become labeled when M. thermoautotrophicum was grown in the presence of methyl-[14C] methionine, [U-14C]phenylalanine or [U-14C]tyrosine. This excludes that C-5 of the deazaflavin is derived from the methyl group of methionine and that the benzene ring comes from phenylalanine or tyrosine.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...