GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 105 (2013): 14-30, doi:10.1016/j.gca.2012.11.034.
    Description: Plant wax lipids and lignin phenols are the two most common classes of molecular markers that are used to trace vascular plant-derived OM in the marine environment. However, their 13C and 14C compositions have not been directly compared, which can be used to constrain the flux and attenuation of terrestrial carbon in marine environment. In this study, we describe a revised method of isolating individual lignin phenols from complex sedimentary matrices for 14C analysis using high pressure liquid chromatography (HPLC) and compare this approach to a method utilizing preparative capillary gas chromatography (PCGC). We then examine in detail the 13C and 14C compositions of plant wax lipids and lignin phenols in sediments from the inner and mid shelf of the Washington margin that are influenced by discharge of the Columbia River. Plant wax lipids (including n-alkanes, n-alkanoic (fatty) acids, n-alkanols, and n-aldehydes) displayed significant variability in both δ13C (-28.3 to -37.5 ‰) and ∆14C values (-204 to +2 ‰), suggesting varied inputs and/or continental storage and transport histories. In contrast, lignin phenols exhibited similar δ13C values (between -30 to -34 ‰) and a relatively narrow range of ∆14C values (-45 to -150 ‰; HPLC-based mesurement) that were similar to, or younger than, bulk OM (-195 to -137 ‰). Moreover, lignin phenol 14C age correlated with the degradation characteristics of this terrestrial biopolymer in that vanillyl phenols were on average ~500 years older than syringyl and cinnamyl phenols that degrade faster in soils and sediments. The isotopic characteristics, abundance, and distribution of lignin phenols in sediments suggest that they serve as promising tracers of recently biosynthesized terrestrial OM during supply to, and dispersal within the marine environment. Lignin phenol 14C measurements may also provide useful constraints on the vascular plant end member in isotopic mixing models for carbon source apportionment, and for interpretation of sedimentary records of past vegetation dynamics. Key words: 14C and 13C composition, radiocarbon age, plant wax lipids, lignin phenols, Washington margin, marine carbon cycling, terrestrial organic matter
    Description: Grants OCE-9907129, OCE-0137005, and OCE-0526268 (to TIE) from the National Science Foundation (NSF) supported this research.
    Keywords: 14C and 13C composition ; Radiocarbon age ; Plant wax lipids ; Lignin phenols ; Washington margin ; Marine carbon cycling ; Terrestrial organic matter
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 118 (2013): 1495–1507, doi:10.1002/2013JG002286.
    Description: Understanding the sources and fate of organic matter (OM) sequestered in continental margin sediments is of importance because the mode and efficiency of OM burial impact the carbon cycle and the regulation of atmospheric CO2 over long time scales. We carried out molecular (lignin-derived phenols from CuO oxidation), elemental, isotopic (δ13C, Δ14C), and sedimentological (grain size and mineral surface area) analyses in order to examine spatial variability in the abundance, source, age of surface sediments of the East China Sea. Higher terrigenous organic matter values were found in the main accumulating areas of fluvial sediments, including the Changjiang (Yangtze) Estuary and Zhejiang-Fujian coastal zone. Isotopic and biomarker data suggest that the sedimentary OM in the inner shelf region was dominated by aged (Δ14C = −423 ± 42‰) but relatively lignin-rich OM (Λ = 0.94 ± 0.57 mg/100 mg OC) associated with fine-grained sediments, suggesting important contributions from soils. In contrast, samples from the outer shelf, while of similar age (Δ14 C = −450 ± 99‰), are lignin poor (Λ = 0.25 ± 0.14 mg/100 mg OC) and associated with coarse-grained material. Regional variation of lignin phenols and OM ages indicates that OM content is fundamentally controlled by hydrodynamic sorting (especially, sediment redistribution and winnowing) and in situ primary production. Selective sorption of acid to aldehyde in clay fraction also modified the ratios of lignin phenols. The burial of lignin in East China Sea is estimated to be relatively efficient, possibly as a consequence of terrigenous OM recalcitrance and/or relatively high sedimentation rates in the Changjiang Estuary and the adjacent Zhejing-Fujian mud belt.
    Description: This study was funded by the Natural Science Foundation of China (41021064), Ministry of Science and Technology (2011CB409802), and others such as (41076052, 2010DFA24590). WY acknowledges financial support from the Alexander von Humboldt Foundation and SKLCE RCD and 111 projects. TE acknowledges financial support from a WHOI Senior Scientist Chair.
    Description: 2014-05-15
    Keywords: Radiocarbon ages ; Lignin phenols ; Sediment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...