GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 20 (2007): 3190-3209, doi:10.1175/JCLI4163.1.
    Description: This study investigated the accuracy and physical representation of air–sea surface heat flux estimates for the Indian Ocean on annual, seasonal, and interannual time scales. Six heat flux products were analyzed, including the newly developed latent and sensible heat fluxes from the Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) project and net shortwave and longwave radiation results from the International Satellite Cloud Climatology Project (ISCCP), the heat flux analysis from the Southampton Oceanography Centre (SOC), the National Centers for Environmental Prediction reanalysis 1 (NCEP1) and reanalysis-2 (NCEP2) datasets, and the European Centre for Medium-Range Weather Forecasts operational (ECMWF-OP) and 40-yr Re-Analysis (ERA-40) products. This paper presents the analysis of the six products in depicting the mean, the seasonal cycle, and the interannual variability of the net heat flux into the ocean. Two time series of in situ flux measurements, one taken from a 1-yr Arabian Sea Experiment field program and the other from a 1-month Joint Air–Sea Monsoon Interaction Experiment (JASMINE) field program in the Bay of Bengal were used to evaluate the statistical properties of the flux products over the measurement periods. The consistency between the six products on seasonal and interannual time scales was investigated using a standard deviation analysis and a physically based correlation analysis. The study has three findings. First of all, large differences exist in the mean value of the six heat flux products. Part of the differences may be attributable to the bias in the numerical weather prediction (NWP) models that underestimates the net heat flux into the Indian Ocean. Along the JASMINE ship tracks, the four NWP modeled mean fluxes all have a sign opposite to the observations, with NCEP1 being underestimated by 53 W m−2 (the least biased) and ECMWF-OP by 108 W m−2 (the most biased). At the Arabian Sea buoy site, the NWP mean fluxes also have an underestimation bias, with the smallest bias of 26 W m−2 (ERA-40) and the largest bias of 69 W m−2 (NCEP1). On the other hand, the OAFlux+ISCCP has the best comparison at both measurement sites. Second, the bias effect changes with the time scale. Despite the fact that the mean is biased significantly, there is no major bias in the seasonal cycle of all the products except for ECMWF-OP. The latter does not have a fixed mean due to the frequent updates of the model platform. Finally, among the four products (OAFlux+ISCCP, ERA-40, NCEP1, and NCEP2) that can be used for studying interannual variability, OAFlux+ISCCP and ERA-40 Qnet have good consistency as judged from both statistical and physical measures. NCEP1 shows broad agreement with the two products, with varying details. By comparison, NCEP2 is the least representative of the Qnet variabilities over the basin scale.
    Description: This work is supported by the NOAA Office of Climate Observation and the Office of Climate Change and Data Detection under Grant NA17RJ1223.
    Keywords: Indian Ocean ; Interannual variability ; Seasonal variability ; Fluxes ; Air-sea interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C11013, doi:10.1029/2012JC008069.
    Description: The study used 126 buoy time series as a benchmark to evaluate a satellite-based daily, 0.25-degree gridded global ocean surface vector wind analysis developed by the Objectively Analyzed airs-sea Fluxes (OAFlux) project. The OAFlux winds were produced from synthesizing wind speed and direction retrievals from 12 sensors acquired during the satellite era from July 1987 onward. The 12 sensors included scatterometers (QuikSCAT and ASCAT), passive microwave radiometers (AMSRE, SSMI and SSMIS series), and the passive polarimetric microwave radiometer from WindSat. Accuracy and consistency of the OAFlux time series are the key issues examined here. A total of 168,836 daily buoy measurements were assembled from 126 buoys, including both active and archive sites deployed during 1988–2010. With 106 buoys from the tropical array network, the buoy winds are a good reference for wind speeds in low and mid-range. The buoy comparison shows that OAFlux wind speed has a mean difference of −0.13 ms−1 and an RMS difference of 0.71 ms−1, and wind direction has a mean difference of −0.55 degree and an RMS difference of 17 degrees. Vector correlation of OAFlux and buoy winds is of 0.9 and higher over almost all the sites. Influence of surface currents on the OAFlux/buoy mean difference pattern is displayed in the tropical Pacific, with higher (lower) OAFlux wind speed in regions where wind and current have the opposite (same) sign. Improved representation of daily wind variability by the OAFlux synthesis is suggested, and a decadal signal in global wind speed is evident.
    Description: The authors are grateful for the support of the NASA Ocean Vector Wind Science Team (OVWST) under grant NNA10AO86G during the five-year development of the OAFlux wind synthesis products. Support from the NOAA Office of Climate Observation (OCO) under grant NA09OAR4320129 in establishing and maintaining the buoy validation database for surface fluxes is gratefully acknowledged.
    Description: 2013-05-14
    Keywords: OAFlux ; Ocean vector ; Satellite-based ; Wind analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 5353–5375, doi:10.1002/jgrc.20386.
    Description: A satellite-based global analysis of high-resolution (0.25°) ocean surface turbulent latent and sensible heat fluxes was developed by the objectively analyzed air-sea fluxes (OAFlux) project. Resolving air-sea flux down to the order to 0.25° is critical for the description of the air-sea interaction on mesoscale scales. In this study, we evaluate the high-resolution product in depicting air-sea exchange in the eddy-rich Gulf Stream region. Two approaches were used for evaluation, one is point-to-point validation based on six moored buoys in the region, and another is basin-scale analysis in terms of wave number spectra and probability density functions. An intercomparison is also carried out between OAFlux-0.25°, OAFlux-1°, and four atmospheric reanalyses. Results indicate that OAFlux-0.25° is able to depict sharp oceanic fronts and has the best performance among the six participating products in comparison with buoy measurements. The mean OAFlux-0.25° differences in latent and sensible heat flux with respect to the buoy are 7.6 Wm−2 (7.7%) with root-mean-square (RMS) difference of 44.9 Wm−2, and 0.0 Wm−2 with RMS difference of 19.4 Wm−2, respectively. Large differences are primarily due to mismatch in SST between gridded data and point measurements when strong spatial gradients are presented. The wave number spectra and decorrelation length scale analysis indicate OAFlux-0.25° depicts eddy variability much better than OAFlux-1° and the four reanalyses; however, its capability in detecting eddies with smaller scale still needs to be improved. Among the four reanalyses, CFSR stands out as the best in comparison with OAFlux-0.25°.
    Description: This study was supported by NOAA Ocean Climate Observations program (OCO) under grant NA09OAR4320129 and the NASA Ocean Vector Wind Science Team (OVWST) under grant NNA10AO86G.
    Description: 2014-04-15
    Keywords: OAFlux ; Latent and sensible heat flux ; Satellite-based ; High resolution ; Flux analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hermes, J. C., Masumoto, Y., Beal, L. M., Roxy, M. K., Vialard, J., Andres, M., Annamalai, H., Behera, S., D'Adamo, N., Doi, T., Peng, M., Han, W., Hardman-Mountford, N., Hendon, H., Hood, R., Kido, S., Lee, C., Lees, T., Lengaigne, M., Li, J., Lumpkin, R., Navaneeth, K. N., Milligan, B., McPhaden, M. J., Ravichandran, M., Shinoda, T., Singh, A., Sloyan, B., Strutton, P. G., Subramanian, A. C., Thurston, S., Tozuka, T., Ummenhofer, C. C., Unnikrishnan, A. S., Venkatesan, R., Wang, D., Wiggert, J., Yu, L., & Yu, W. (2019). A sustained ocean observing system in the Indian Ocean for climate related scientific knowledge and societal needs. Frontiers in Marine Science, 6, (2019): 355, doi: 10.3389/fmars.2019.00355.
    Description: The Indian Ocean is warming faster than any of the global oceans and its climate is uniquely driven by the presence of a landmass at low latitudes, which causes monsoonal winds and reversing currents. The food, water, and energy security in the Indian Ocean rim countries and islands are intrinsically tied to its climate, with marine environmental goods and services, as well as trade within the basin, underpinning their economies. Hence, there are a range of societal needs for Indian Ocean observation arising from the influence of regional phenomena and climate change on, for instance, marine ecosystems, monsoon rains, and sea-level. The Indian Ocean Observing System (IndOOS), is a sustained observing system that monitors basin-scale ocean-atmosphere conditions, while providing flexibility in terms of emerging technologies and scientificand societal needs, and a framework for more regional and coastal monitoring. This paper reviews the societal and scientific motivations, current status, and future directions of IndOOS, while also discussing the need for enhanced coastal, shelf, and regional observations. The challenges of sustainability and implementation are also addressed, including capacity building, best practices, and integration of resources. The utility of IndOOS ultimately depends on the identification of, and engagement with, end-users and decision-makers and on the practical accessibility and transparency of data for a range of products and for decision-making processes. Therefore we highlight current progress, issues and challenges related to end user engagement with IndOOS, as well as the needs of the data assimilation and modeling communities. Knowledge of the status of the Indian Ocean climate and ecosystems and predictability of its future, depends on a wide range of socio-economic and environmental data, a significant part of which is provided by IndOOS.
    Description: This work was supported by the PMEL contribution no. 4934.
    Keywords: Indian Ocean ; sustained observing system ; IndOOS ; data ; end-user connections and applications ; regional observing system ; interdisciplinary ; integration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...