GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Groundwater. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (357 pages)
    Edition: 1st ed.
    ISBN: 9783030668136
    Series Statement: Springer Hydrogeology Series
    DDC: 333.9104
    Language: English
    Note: Intro -- Preface -- Contents -- About the Author -- 1 Introduction to Climate Change and Groundwater -- 1.1 Introduction -- 1.2 Climate Change and Groundwater -- 1.3 Climate Change Modeling -- 1.4 Projected Global Climate Changes -- 1.5 Climate Change and Groundwater Recharge and Use -- 1.6 Sea Level Rise and Groundwater -- 1.7 Evaluating Climate Change Impacts on Groundwater Storage -- 1.8 Adaptation Options -- 1.9 Water Planning and Governance -- 1.10 Climate Change Adaptation Planning Process -- 1.11 Case Studies of Adaptation to Climate Change in High Groundwater Use Area -- References -- 2 Climate and Groundwater Primer -- 2.1 Aquifer Water Budgets -- 2.2 Potential, Reference, and Actual Evaporation -- 2.3 Infiltration -- 2.4 Recharge -- 2.4.1 Recharge Types -- 2.4.2 Anthropogenic Aquifer Recharge -- 2.4.3 Quantification of Recharge -- 2.4.3.1 Water Fluctuation Method -- 2.4.3.2 Environmental Tracers -- 2.4.3.3 Water Budget Methods -- 2.4.3.4 Flow-Tube Method -- 2.4.4 Climate Change, Land Use Land Cover Change, and Groundwater Recharge -- 2.4.5 Effects of Temperature on Recharge -- 2.4.6 Climate Change and Recharge -- 2.5 Climate Change and Water Demand -- 2.5.1 Plant Evapotranspiration Rates and Irrigation Water Demands -- 2.5.2 Climate Change and Domestic and Industrial Water Demands -- References -- 3 Historical Evidence for Anthropogenic Climate Change and Climate Modeling Basics -- 3.1 Introduction -- 3.2 Historical Climate Trends -- 3.2.1 Temperature -- 3.2.2 Precipitation -- 3.2.3 Drought -- 3.3 Historic Sea Level Rise -- 3.4 Tropical Storm Frequency and Intensity -- 3.5 Atmospheric Carbon Dioxide Concentration -- 3.6 General Circulation Models (GCMs) -- 3.6.1 GCM History -- 3.6.2 Coupled Model Intercomparison Project -- 3.6.3 CMIP and IPCC Emissions Scenarios -- 3.6.4 Accessing GCM and RGM Results -- 3.6.4.1 Climate Wizard. , 3.6.4.2 U.S. Geological Survey Viewers -- References -- 4 Intergovernmental Panel on Climate Change and Global Climate Change Projections -- 4.1 Intergovernmental Panel on Climate Change -- 4.2 Global Climate Change Predictions -- 4.2.1 Introduction -- 4.2.2 Global Temperature Change -- 4.2.3 Precipitation -- 4.2.4 Droughts and Aridity -- 4.2.5 Snow and Glacier Dominated Water Systems -- 4.2.6 Global Sea Level Rise -- 4.2.7 Extreme Storms -- References -- 5 Modeling of Climate Change and Aquifer Recharge and Water Levels -- 5.1 Introduction -- 5.2 Modeling Approaches -- 5.3 Bias Correction -- 5.4 Downscaling -- 5.4.1 Scaling and Change Factors -- 5.4.2 Dynamical Downscaling -- 5.4.3 Statistical Downscaling -- 5.4.4 Stochastic Weather Generators -- 5.5 Hydrologic Modeling -- 5.6 Aquifer Heterogeneity and Modeling Results -- 5.7 Bottom-Up (Decision-Scaling, Sensitivity Analysis) Approach -- 5.8 Published Modeling Studies -- 5.8.1 Edwards Aquifer, Texas -- 5.8.2 Rhenish Massif, Germany -- 5.8.3 Southern High Plains, New Mexico and Texas -- 5.8.4 High Plains Aquifer, Western United States -- 5.8.5 Serral-Salinas Aquifer, Southeastern Spain -- 5.8.6 Galicia-Costa, Spain -- 5.8.7 West Bengal, India -- 5.8.8 Grand Forks, South Central British Columbia, Canada -- 5.8.9 Mediterranean Coastal Aquifers -- 5.8.10 Suwannee River Basin, Northern Florida -- 5.9 Conclusions -- References -- 6 Sea Level Rise and Groundwater -- 6.1 Introduction -- 6.2 Direct Inundation -- 6.2.1 Introduction -- 6.2.2 Future Inundation Mapping -- 6.3 Extreme Sea Level Events (Storm Surges) -- 6.3.1 Climate Change and ESLs -- 6.3.2 Historical Impacts of ESLs on Fresh Groundwater Resources -- 6.4 Saline Water Intrusion -- 6.4.1 Basics -- 6.4.2 Theoretical Modeling -- 6.4.3 Evaluation of Location of Fresh-Saline Water Interface -- 6.4.4 Saline Water Intrusion Vulnerability Assessments. , 6.4.5 Site Specific Modeling of SLR Impacts on Saline Water Intrusion -- 6.4.5.1 Monterey County, California -- 6.4.5.2 Hilton Head, South Carolina -- 6.4.5.3 Shelter Island, New York -- 6.4.5.4 Dutch Delta, The Netherlands -- 6.4.5.5 Island of Faster, Denmark -- 6.4.5.6 Borkum, German North Sea -- 6.4.5.7 Broward County, Southeastern Florida -- 6.4.5.8 Laccadive Islands, India -- 6.5 Rising Water Tables-Groundwater Inundation -- 6.5.1 Coastal Groundwater Inundation Vulnerability Mapping Methods -- 6.5.1.1 Three-Dimensional Groundwater Modeling Approach -- 6.5.1.2 Empirical Water Table Elevation Surface and Hydrostatic Rise Approach -- 6.5.1.3 Simple Hydrostatic Rise with No Hydraulic Gradient Approach -- 6.5.2 Coastal Groundwater Inundation Studies -- 6.5.2.1 Oahu, Hawaii -- 6.5.2.2 Northern California -- 6.5.2.3 Honolulu, Hawaii -- 6.5.2.4 Coastal New Hampshire -- 6.5.2.5 San Francisco Bay Area -- References -- 7 Climate Change and Small Islands -- 7.1 Introduction -- 7.2 Small Island Erosion and Inundation -- 7.3 Fresh Groundwater on Small Islands -- 7.4 Field and Modeling Studies of Freshwater Lenses and Their Vulnerability to Climate Change -- 7.4.1 Theoretical Modeling (Underwood et al. 1992) -- 7.4.2 Home Island, South Keeling Atoll, Indian Ocean -- 7.4.3 Tarawa, Republic of Kiribata -- 7.4.4 Modeling of Impacts of Storm Overwash and SLR on Pacific Atolls -- 7.4.5 Andros Island, Bahamas -- 7.4.6 Modeling of Effects of SLR on Waves and Overwash -- 7.4.7 Roi-Namur Island, Kwajalein Atoll, Republic of the Marshall Island, Overwash -- 7.4.8 Supertyphoon Haiyan, Samar Island, Philippines -- 7.4.9 Distant Source Waves -- 7.5 Small Island Climate Change Adaptation Options -- References -- 8 Groundwater Related Impacts of Climate Change on Infrastructure -- 8.1 Introduction -- 8.2 Urban Rising Groundwater Levels -- 8.3 Stormwater Management Systems. , 8.4 Centralized Sewage Systems -- 8.5 On-Site Sewage Treatment and Disposal Systems -- 8.6 Agricultural and Changing Groundwater Levels -- 8.7 Land Subsidence -- References -- 9 Adaptation and Resilience Concepts -- 9.1 Introduction -- 9.2 Vulnerability Assessments -- 9.3 Adaptation Planning Under Uncertainty -- 9.4 Adaptative Capacity -- 9.5 Effectiveness of Adaptation -- References -- 10 Adaptation Options -- 10.1 Introduction -- 10.2 Demand Management -- 10.2.1 Demand Management Basics -- 10.2.2 Irrigation Demand Management -- 10.2.3 Residential Water Demand Management -- 10.2.3.1 Economic Incentives -- 10.2.3.2 Legal Mandates -- 10.2.3.3 Consumer Education -- 10.2.4 Water Utilities Leakage and Non-revenue Water -- 10.3 Supply Augmentation -- 10.3.1 Desalination -- 10.3.2 Managed Aquifer Recharge -- 10.3.3 Wastewater Reuse -- 10.3.4 Rainwater Harvesting -- 10.3.5 Transferring Water -- 10.4 Adaptations Options for Rural Areas of Developing Countries -- 10.5 Adaptations to Saline-Water Intrusion -- References -- 11 Conjunctive Use -- 11.1 Introduction -- 11.2 Water Governance -- 11.3 Implementation of Conjunctive Use -- 11.3.1 Southern California -- 11.3.2 Arizona -- 11.3.3 Florida -- References -- 12 Groundwater Management and Adaptation Decision Making Process -- 12.1 Introduction -- 12.2 Water Supply Decision Makers -- 12.3 Water Supply Decision-Making Process -- 12.3.1 Basic Decision-Making Process -- 12.3.2 Decision Support Systems -- 12.4 General Public Engagement -- 12.5 Engagement of Decision-Makers with the Climate Change Research Community -- 12.6 Decision-Making Planning Horizon -- 12.6.1 Florida -- 12.6.2 Texas -- 12.6.3 Arizona -- 12.6.4 California -- 12.7 Summary -- References -- 13 Regional Hydrological Impacts of Climate Changes and Adaptation Actions and Options -- 13.1 Introduction -- 13.2 Southwestern North America. , 13.3 High Plains (Western United States) -- 13.4 Florida -- 13.5 Mediterranean Region -- 13.5.1 Alicante, Spain -- 13.5.2 Southern Italy -- 13.5.3 Mediterranean Coastal Aquifers -- 13.5.4 Serral-Salinas Aquifer, Southeastern Spain -- 13.5.5 Adaptation Options in the Mediterranean Region -- 13.6 Africa -- References -- 14 Applied Climate Change Assessment and Adaptation -- 14.1 Introduction -- 14.2 Prediction of Local Climate Changes -- 14.3 Prediction of Sea Level Rise Impacts -- 14.3.1 Prediction of SLR Impacts -- 14.3.2 Sea Level Rise Adaptation -- 14.4 Water Supply Adaptation Options -- 14.4.1 Water Demand Management and Reallocation -- 14.4.2 New Water Supply Options -- 14.4.3 Optimization-Conjunctive Used and Managed Aquifer Recharge -- 14.5 Decision-Making Under Climate Uncertainty -- 14.6 Prognosis and Recommendations -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Hydrogeology journal 6 (1998), S. 538-548 
    ISSN: 1435-0157
    Keywords: Key words waste disposal ; injection wells ; carbonate rocks ; Florida
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Résumé Depuis 1988, dans le sud-ouest de la Floride, l'injection dans des puits profonds a été pratiquée pour stocker des déchets liquides domestiques. Ces déchets liquides sont injectés dans une zone à transmissivité extrêmement forte d'une dolomie fracturée de la formation Oldsmar de l'Éocène inférieur, appartenant au système aquifère de Floride ; cette zone est désignée habituellement sous le nom de zone de Boulder. Les données obtenues au cours de la foration et des essais opérationnels sur les puits d'injection dans le sud-ouest de la Floride fournit des informations sur la nature de la zone d'injection et sur les couches supérieures qui la rendent captive. La localisation des zones à forte transmissivité susceptibles de recevoir de grandes quantités d'eaux usées est variable verticalement et horizontalement et ne peut pas être prédite avec certitude. Par exemple, un intervalle à forte transmissivitéépais de 40,9 m dans un puits d'injection est absent dans un puits foréà seulement 85,4 m. Une migration vers l'amont de fluides injectés à faible densité s'est produite, mais les liquides injectés n'ont été détectés dans aucun des sites de contrôle, comme cela s'est produit dans les sites de puits d'injection le long des côtes de Floride sud-est, centre-ouest et centre-est. Le confinement primaire des liquides injectés, c'est-à-dire les niveaux les plus profonds de confinement effectif, consiste en des niveaux non fracturés de dolomie à faible perméabilité dans la formation Oldsmar, dont la localisation est elle aussi variable latéralement et verticalement. L'origine et le contrôle de la distribution des fractures dans la formation Oldsmar sont mal connues.
    Abstract: Resumen La inyección en pozos profundos se está usando desde 1988 para el vertido de residuos líquidos municipales en el sudoeste de Florida. Los residuos líquidos se inyectan en una zona altamente transmisiva correspondiente a una dolomita fracturada de la Formación Oldsmar, que data de principios del Eoceno, en una zona comúnmente denominada Boulder. Los datos recogidos durante la perforación y la operación de estos pozos proporcionan información sobre la naturaleza de la zona de inyección y de las capas confinantes suprayacentes. La localización de las zonas de alta transmisividad que potencialmente pueden aceptar grandes cantidades de residuos líquidos varía horizontal y verticalmente, por lo que su localización supone una gran incertidumbre. Como ejemplo, un intervalo altamente transmisivo de 40.9 m de espesor presente en un pozo de inyección no aparecía en otro pozo situado a tan sólo 85.4 m. En algunos puntos se ha detectado migración de los fluidos inyectados de baja densidad hacia la superficie, pero en cambio los líquidos no aparecen en ningún pozo de control profundo, cosa que sí ha sucedido en otros pozos de inyección a lo largo de las costas sudeste, oeste-central y este-central de Florida. La contención primaria de los líquidos inyectados (es decir, las capas más profundas que producen un confinamiento efectivo) consisten en capas de dolomita no fracturada de baja permeabilidad de la Formación Oldsmar, también variables lateral y verticalmente. El origen y la distribución de las fracturas en la Formación Oldsmar no son bien conocidos.
    Notes: Abstract  Deep-well injection has been used to dispose of municipal liquid wastes in southwestern Florida since 1988. The liquid wastes are injected into an extremely high-transmissivity zone of fractured dolomite in the Early Eocene Oldsmar Formation of the Floridan aquifer system; this zone is commonly referred to as the Boulder Zone. Data collected during the drilling and operational testing of southwestern Florida injection wells provide insights into the nature of the injection zone and overlying confining beds. The location of high-transmissivity zones that are capable of accepting large quantities of waste water is vertically and horizontally variable and cannot be predicted with certainty. A 40.9-m thick high-permeability interval in one injection well, for example, was absent in a well drilled only 85.4 m away. Some upward migration of low-density injected fluids has occurred, but at no site were the injected liquids detected in deep monitor wells, such as occurred at injection-well sites along the coasts of southeastern, west-central, and east-central Florida. The primary confinement of the injected liquids (i.e., deepest effective confining beds) consists of unfractured beds of low-permeability dolomite within the Oldsmar Formation, whose locations are also laterally and vertically variable. The origin and controls of the distribution of fractures in the Oldsmar Formation are poorly understood.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...