GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • File content; File format; File name; File size; Uniform resource locator/link to file  (2)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Niezgodzki, Igor; Tyszka, Jaroslaw; Knorr, Gregor; Lohmann, Gerrit (2019): Was the Arctic Ocean ice free during the latest Cretaceous? The role of CO2 and gateway configurations. Global and Planetary Change, 177, 201-212, https://doi.org/10.1016/j.gloplacha.2019.03.011
    Publication Date: 2023-01-13
    Description: We provide the results of 11 Late Cretaceous climate simulations (Tab. 1 in Niezgodzki et al. [2019, doi:10.1016/j.gloplacha.2019.03.011]) produced with COSMOS in a coupled atmosphere-ocean configuration. Five of these experiments use a 3 x pre-industrial (PI) CO2 level (840 ppm) while 6 of them were run with 4xPI CO2 (1120 ppm). The experiments with the same CO2 levels differ by gateway configurations between the Arctic Ocean and North proto-Atlantic basin. In spin-up experiments we employ Maastrichtian (~70 Ma) paleogeography of Markwick and Valdes [2004, doi:10.1016/j.palaeo.2004.06.015]. More information about model scenarios and model set-up can be found in Niezgodzki et al. [2019, doi:10.1016/j.gloplacha.2019.03.011]. Here we publish simulated winter (DJF) surface temperatures (tsurf) and salinity (SAO), averaged March-April (Ma-Ap) sea surface temperature (THO) and SAO and monthly sea-ice compactness (SICOMO) of each experiment. Additionally, for two gateway configurations we show DJF and summer (JJA) 10m meridional (v10) and zonal (u10) wind speeds as well as JJA shortwave net surface radiation (srads), net clear sky surface radiation (srafs), longwave net surface radiation (trads) and clear sky surface radiation (trafs).
    Keywords: File content; File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 175 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hasenclever, Jörg; Knorr, Gregor; Rüpke, Lars H; Köhler, Peter; Morgan, Jason Phipps; Garofalo, Kristin; Barker, Stephen; Lohmann, Gerrit; Hall, Ian R (2017): Sea level fall during glaciation stabilized atmospheric CO2 by enhanced volcanic degassing. Nature Communications, 8, 15867, https://doi.org/10.1038/ncomms15867
    Publication Date: 2023-01-13
    Description: Paleo-climate records and geodynamic modelling indicate the existence of complex interactions between glacial sea level changes, volcanic degassing, and atmospheric CO2, which may have modulated the climate system's descent into the last ice age. Between ~85-70 ka, during an interval of decreasing axial tilt, the orbital component in global temperature records gradually declined, while atmospheric CO2, instead of continuing is long-term correlation with Antarctic temperature, remained relatively stable. Based on novel global geodynamic models and the joint interpretation of paleo-proxy data as well as biogeochemical simulations, we show that a sea level fall in this interval caused enhanced pressure-release melting in the uppermost mantle, which may have induced a surge in magma and CO2 fluxes from mid-ocean ridges and oceanic hotspot volcanoes. Our results reveal a hitherto unrecognised negative feedback between glaciation and atmospheric CO2 predominantly controlled by marine volcanism on multi-millennial (suborbital) timescales of ~ 5,000-15,000 years.
    Keywords: File content; File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 10 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...