GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Emergency management-Congresses. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (456 pages)
    Edition: 1st ed.
    ISBN: 9789402420463
    Series Statement: NATO Science for Peace and Security Series C: Environmental Security Series
    DDC: 363.34
    Language: English
    Note: Intro -- Preface -- Introduction -- References -- Contents -- Part I The Role of NATO -- 1 NATO Cooperation with Georgia in the Framework of the Science for Peace and Security (SPS) Programme -- 1.1 The Science for Peace and Security (SPS) Programme -- 1.2 SPS Cooperation with Georgia -- 1.3 Securing Georgia and the Caucasus Against Geohazards -- 1.4 Conclusion -- 2 Lens on NATO-Georgia Cooperation: A Shared Engagement -- 3 An Overview of the 20-Year Collaboration Between NATO and Earth Scientists to Assess Geohazards in the Caucasus and Other Critical Regions -- 3.1 Introduction -- 3.2 Project CLG 982957 - Volcanic Hazards and Countermeasures for Georgian Section of Caspian Pipelines -- 3.2.1 Summary of the Project -- 3.2.2 Why this Project -- 3.2.3 Outcomes -- 3.3 Project G4934 - Security Against Geohazards at the Major Enguri Hydroelectric Scheme in Georgia -- 3.3.1 Summary of the Project -- 3.3.2 Why this Project -- 3.3.3 Outcomes -- 3.4 Project SFP 983142 - Geo-Environmental Security of the Toktogul Hydroelectric Power Station Region, Central Asia -- 3.4.1 Summary of the Project -- 3.4.2 Why this Project -- 3.4.3 Outcomes -- 3.5 CLG Project 978989 - A Multidisciplinary Approach to Recent Geologic Catastrophes at Subduction Zones -- 3.5.1 Summary of the Project -- 3.5.2 Why this Project -- 3.5.3 Outcomes -- 3.6 Discussion and Final Remarks -- References -- Part II Key Studies Focused on Regional and Geological Aspects -- 4 Active Kinematics of the Greater Caucasus from Seismological and GPS Data: A Review -- 4.1 Introduction -- 4.2 Main Tectonic Features of Greater Caucasus -- 4.3 Seismicity of the Greater Caucasus -- 4.3.1 Source of Data -- 4.3.2 Epicentre Distribution -- 4.3.3 Hypocentres Distribution -- 4.3.4 Focal Mechanism Solutions -- 4.3.4.1 Data Source -- 4.3.4.2 FMS Results -- 4.3.5 Stress Distribution -- 4.4 GPS Data. , 4.4.1 Data Source -- 4.4.2 Results -- 4.5 Discussion -- 4.5.1 Seismicity -- 4.5.2 Active Fault Kinematics -- 4.5.3 Stress Field and GPS Deformation Field -- 4.6 Conclusions -- References -- 5 Structural Architecture of the Western Greater Caucasus Orogen: New Data from a Crustal-Scale Structural Cross-Section -- 5.1 Introduction -- 5.2 Tectonic Setting -- 5.3 The Crustal-Scale Structural Cross-Section -- 5.4 Discussion -- 5.5 Conclusions -- References -- 6 The Geometry of the Two Orogens Convergence and Collision Zones in Central Georgia: New Data from Seismic Reflection Profiles -- 6.1 Introduction -- 6.2 Geological Setting -- 6.3 Interpretation of Seismic Reflection Profiles -- 6.4 Discussion -- 6.5 Conclusions -- References -- 7 Regional Seismotectonic Zonation of Hydrocarbon Fields in Active Thrust Belts: A Case Study from Italy -- 7.1 Introduction -- 7.2 Triggered Versus Induced Seismicity -- 7.3 Stratigraphic and Structural Framework of the Italian Petroleum Systems -- 7.4 From Hydrocarbon Wells to Hydrocarbon Fields (HFs) and Hydrocarbon Field Assemblages (HFAs) -- 7.5 Kinematic Zonation of HFAs -- 7.6 Seismicity Versus HFAs -- 7.7 The Seismogenic Provinces -- 7.7.1 The Extensional Intermountain Province -- 7.7.2 The Deep and Shallow Compressional Province -- 7.7.3 The Strike-Slip Province -- 7.8 Seismotectonic Map of Hydrocarbon Field Assemblages (HFAs) -- 7.9 Final Remarks -- References -- Part III Key Studies for Seismic Hazard Assessment -- 8 The 2020 National Seismic Hazard Model for Georgia (Sakartvelo) -- 8.1 Introduction -- 8.2 Historical Review of the Development of Seismic Hazard Maps for Georgia -- 8.3 Developing the Seismic Hazard Model of Georgia -- 8.3.1 Earthquake Catalogue -- 8.3.1.1 Catalogue Compilation -- 8.3.1.2 Magnitude Homogenization -- 8.3.1.3 Declustering of the Earthquake Catalogue. , 8.3.1.4 Magnitude and Time Completeness -- 8.3.2 Regional Geology and Tectonics -- 8.3.3 Seismogenic Source Models -- 8.3.3.1 Area Source Model -- 8.3.3.2 Active Faults and Background Seismicity Model -- 8.3.3.3 Maximum Magnitude -- 8.4 Ground Motion Modelling -- 8.5 Logic Tree and Model Uncertainties -- 8.6 Ground Motion Hazard Assessment: Results -- 8.7 Hazard Disaggregation for the Selected Site -- 8.8 Conclusions and Future Perspectives -- 8.9 Data and Resources -- References -- 9 Non-ergodic Ground-Motion Models for Crustal Earthquakes in Georgia -- 9.1 Introduction -- 9.2 Nonergodic Seismic Hazard Analysis -- 9.2.1 Non-ergodic GMMs -- 9.3 Non-ergodic GMMs for California -- 9.4 Ground-Motion Data Set for Georgia -- 9.5 Non-ergodic GMM for Georgia -- 9.6 Conclusions -- References -- 10 Time Series Analysis of Fault Strain Accumulation Around Large Dam: The Case of Enguri Dam, Greater Caucasus -- 10.1 Introduction -- 10.2 Data -- 10.3 Recurrence Intervals and Magnitudes Time Series Analysis -- 10.4 Results -- 10.5 Discussion -- 10.6 Detection of an Anomalous Behavior of the Dam Using Complexity Analysis of Dam Tilts -- 10.7 Conclusions -- References -- 11 Geohazard Assessment Along the Southern Slope of the Greater Caucasus (Azerbaijan) -- 11.1 Introduction -- 11.2 The Study Area -- 11.3 Methodology -- 11.4 Conclusions -- References -- Part IV Key Studies for Volcanic Hazard Assessment -- 12 Quaternary Volcanic Activity in the Greater Caucasus: A Review of Elbrus, Kazbek and Keli Volcanoes -- 12.1 Introduction and Background -- 12.2 The Kazbek Neovolcanic Centre -- 12.2.1 Phase I (Mid-Pleistocene, 460-380 ka) -- 12.2.2 Phase II (Middle Pleistocene, 310-200 ka) -- 12.2.2.1 Early Episode of Phase II (II1-310-260 ka) -- 12.2.2.2 Late Episode of Phase II (II2-240-200 ka) -- 12.2.3 Phase III (Late Pleistocene, 130-90 ka). , 12.2.3.1 Early Episode of the Third Phase of Activity (III1-130-90 ka) -- 12.2.3.2 Late Episode of Phase III (III2-130-90 ka) -- 12.2.4 Phase IV (Late Pleistocene-Holocene, < -- 50 ka) -- 12.3 The Keli Neovolcanic Centre -- 12.3.1 Phase I (Middle Pleistocene, 245-170 ka) -- 12.3.2 Phase II (Late Pleistocene, 135-70 ka) -- 12.3.2.1 Early Episode of the Phase II (II1-135-100 ka) -- 12.3.2.2 Late Episode of the Phase II (II2-100-70 ka) -- 12.3.3 Phase III (Late Pleistocene-Holocene, < -- 30 ka) -- 12.4 Elbrus Neovolcanic Centre -- 12.4.1 Phase I (End of the Eopleistocene, 950-900 ka) -- 12.4.2 Phase II (Early Neopleistocene - 800-700 ka) -- 12.4.3 Phase III (Middle Neopleistocene, 225-170 ka) -- 12.4.4 Phase IV (Late Neopleistocene, 110-70 ka) -- 12.4.5 Phase V (Late Neopleistocene-Holocene, < -- 35 ka) -- 12.5 Final Remarks -- References -- 13 Tectonic Control Over the Abuli Samsari Volcanic Ridge, Lesser Caucasus, Georgia -- 13.1 Introduction -- 13.2 Geological Setting -- 13.3 Methods -- 13.3.1 Volcanic Centres and Tectonic Lineaments -- 13.3.2 Areal Density of Volcanic Centres -- 13.3.3 Inferring Magma Pathway Azimuth -- 13.4 Results -- 13.4.1 Volcanic Centres and Lineaments Identification -- 13.4.2 Areal Density of Volcanic Centers -- 13.4.3 Inferring the Direction of Magma Pathways -- 13.4.4 Field Data -- 13.5 Discussion -- 13.5.1 Geological-Structural Features -- 13.5.2 Seismic and Volcanic Hazard Assessment -- 13.6 Conclusions -- References -- Part V Key Studies for Hydrological, Landslide and Coastal Hazard Assessment -- 14 Landslide and Mudflow Hazard Assessment in Georgia -- 14.1 Rationale -- 14.2 Morphological Aspects of the Territory -- 14.3 The Influence of Climate and Weather -- 14.4 Classification of Landslide Types in the Territory of Georgia -- 14.5 New Hazard Maps Calculation -- 14.6 Results. , 14.7 Final Remarks and Future Developments -- References -- 15 Significance of the Spatial Resolution of DEM in Regional Slope Stability Analysis Enguri Dam, Republic of Georgia -- 15.1 Introduction and Background -- 15.2 Study Area -- 15.3 Data and Method -- 15.3.1 Model Inputs -- 15.3.2 GIS - TISSA -- 15.4 Results -- 15.5 Discussion -- 15.6 Conclusions -- References -- 16 Description of a 2-Year, High-Resolution Geodetic Monitoring of the Khoko Landslide, Enguri Reservoir, Georgia -- 16.1 Introduction -- 16.2 Materials and Methods -- 16.3 Results -- 16.3.1 First Observation Period -- 16.3.2 Second Observation Period -- 16.3.3 Third Observation Period -- 16.3.4 Entire Observation Period -- 16.4 Final Remarks -- References -- 17 Examples of Coastal Hazard Along the Georgian Black Sea Coast -- 17.1 Introduction -- 17.2 The Chorokhi Lithodynamic System (Southern Region) -- 17.3 The Central Coastline -- 17.3.1 Supsa-Natanebi -- 17.3.2 Kolkheti Coastal Zone -- 17.4 Abkhazia (Northern Region) -- 17.5 Final Remarks -- References -- Part VI Seismic Microzonation -- 18 Extensive Microzonation as a Tool for Seismic Risk Reduction: Methodological and Political Issues -- 18.1 Introduction -- 18.2 The Italian Guidelines for Seismic Microzonation (IGSM) -- 18.3 Implementation of Microzonation Studies in Italy -- 18.4 Conclusions -- References -- 19 Preliminary Results of Site Effects Assessment in Mtskheta (Georgia) -- 19.1 Introduction -- 19.2 Tectonic Setting and Seismicity -- 19.3 Geological Setting -- 19.4 Dataset of Geophysical Measurements -- 19.5 Results -- 19.6 Response Spectra and Amplification Factors with the Conventional Vs,30 Site Proxy -- 19.7 Conclusions -- References -- 20 Rheological Properties of Soils in Assessing the Seismic Hazard of the South Ukrainian Nuclear Power Plant -- 20.1 Introduction -- 20.2 Ground Response Analysis. , 20.3 Site Amplification in the South Ukrainian Nuclear Power Plant.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...