GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Baton Rouge :Taylor & Francis Group,
    Keywords: Microalgae -- Biotechnology. ; Biomass energy. ; Microalgae -- Industrial use. ; Electronic books.
    Description / Table of Contents: IntroductionTaurai MutandaThe Biology of MicroalgaeRanganathan Rajkumar and Zahira YaakobStrain Selection for Biodiesel ProductionSubburamu KarthikeyanEnumeration of Microalgal CellsTaurai Mutanda and Faizal BuxMicroalgal Cultivation Reactor SystemsMelinda J. GriffithsHarvesting of Microalgal BiomassManjinder Singh, Rekha Shukla, and Keshav DasLipid Identification and Extraction TechniquesDesikan RameshSynthesis of Biodiesel/Bio-oil from MicroalgaeBhaskar Singh, Yun Liu, and Yogesh C. SharmaAnalysis of Microalgal Biorefineries for Bioenergy from an Environmental and Economic Perspective Focus on Algal BiodieselSusan T.L. Harrison, Christine Richardson, and Melinda J. GriffithsValue-Added Products from MicroalgaeTerisha Naidoo, Nodumo Zulu, Dheepak Maharajh, and Rajesh LallooAlgae-Mediated Carbon Dioxide Sequestration for Climate Change Mitigation and Conversion to Value-Added ProductsAjam Shekh, Kannan Krishnamurthi, Raju Yadav, Sivanesan Devi, Tapan Chakrabarti, Sandeep Mudliar, Vikas Chauhan, Ravi Sarada, and Sanniyasi ElumalaiPhycoremediation by High-Rate Algal Ponds (HRAPs)Ismail Rawat, Ramanathan Ranjith Kumar, and Faizal BuxMicroalgal Biotechnology: Today's (Green) Gold RushRavi Venkata Durvasula, Durvasula Subba Rao, and Vadrevu Sreehari Rao.
    Type of Medium: Online Resource
    Pages: 1 online resource (251 pages)
    Edition: 1st ed.
    ISBN: 9781466515307
    DDC: 579.8
    Language: English
    Note: Front Cover -- Contents -- Preface -- Acknowledgments -- About the Editor -- Contributors -- Chapter 1 - Introduction -- Chapter 2 - The Biology of Microalgae -- Chapter 3 - Strain Selection for Biodiesel Production -- Chapter 4 - Enumeration of Microalgal Cells -- Chapter 5 - Microalgal Cultivation Reactor Systems -- Chapter 6 - Harvesting of Microalgal Biomass -- Chapter 7 - Lipid Identification and Extraction Techniques -- Chapter 8 - Synthesis of Biodiesel/Bio-Oil from Microalgae -- Chapter 9 - Analysis of Microalgal Biorefineries for Bioenergy from an Environmental and Economic Perspective Focus on Algal Biodiesel -- Chapter 10 - Value-Added Products from Microalgae -- Chapter 11 - Algae-Mediated Carbon Dioxide Sequestration for Climate Change Mitigation and Conversion to Value-Added Products -- Chapter 12 - Phycoremediation by High-Rate Algal Ponds (HRAPs) -- Chapter 13 - Microalgal Biotechnology: Today's (Green) Gold Rush -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    New Delhi :Springer (India) Private Limited,
    Keywords: Microbial ecology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (194 pages)
    Edition: 1st ed.
    ISBN: 9788132226413
    Series Statement: Developments in Applied Phycology Series ; v.7
    DDC: 579.8
    Language: English
    Note: Intro -- Dedication -- Foreword -- Preface -- Acknowledgment -- Contents -- Editors and Contributors -- 1: Algae: Promising Future Feedstock for Biofuels -- 1 Introduction -- 2 Micro- and Macroalgal Biomass as Biofuel Feedstock -- 3 Algal Biomass Cultivation -- 4 Progress and Constraints with Biomass Productivity -- 5 Algal Products -- 5.1 Nonfuel Bioproducts -- 5.2 Lipids, Hydrocarbons, and Biodiesel -- 5.3 Carbohydrates and Alcohol -- 5.4 Hydrogen -- 6 Conclusions -- 7 Future Perspectives: Scope, Challenges, and Opportunities -- References -- 2: Phycoremediation: Future Perspective of Green Technology -- 1 Introduction -- 2 Pollution in the Aquatic Environment -- 2.1 Organic Pollutants -- 2.1.1 Hydrocarbons -- 2.1.2 Polychlorinated Biphenyls (PCBs) -- 2.1.3 Insecticides -- 2.1.4 Detergents -- 2.2 Inorganic Pollutants -- 2.2.1 Heavy Metals -- 2.2.2 Radioactive Isotopes -- 3 Bioremediaton -- 3.1 Phycoremediation -- 3.1.1 Algae -- 4 Removal of Heavy Metals by Algae -- 4.1 Factors Affecting the Removal of Heavy Metals -- 4.1.1 Effect of pH -- 4.1.2 Effect of Contact Time -- 4.1.3 Effect of Temperature -- 4.1.4 Effect of Biomass Concentration -- 4.1.5 Effect of Initial Metal Ion Concentration -- 4.1.6 Effect of the Presence of Anions and Cations -- 4.2 Mechanism of Heavy Metal Removal -- 5 Potential Applications of Algae in Biotechnology -- 5.1 Food and Feed -- 5.2 Fine Chemicals -- 5.3 Pharmaceuticals -- 5.4 Biofertilizer -- 5.5 Wastewater Treatment -- 6 Conclusion -- References -- 3: Applications of Algal Biofilms for Wastewater Treatment and Bioproduct Production -- 1 Introduction and Current State of Technology -- 1.1 An Algal-Based Biorefinery for Transforming Wastes into Bioproducts -- 2 Mathematical Modeling of Algal Biofilm Growth -- 3 Culturing Algal Biofilms for Wastewater Treatment. , 3.1 Municipal and Animal Wastewater Types -- 3.2 Biomass Productivity and Nutrient Removal Capacity -- 3.3 Industrial Wastewaters -- 4 Conclusions -- References -- 4: Biofuel Production Along with Remediation of Sewage Water Through Algae -- 1 Introduction -- 2 Materials and Methods -- 2.1 Study Area -- 2.2 Field Sampling and Laboratory Analysis -- 2.3 Process Description -- 2.3.1 Lake Systems -- 2.3.2 Facultative Ponds -- 2.3.3 Mechanically Aerated Systems -- 2.4 Comparative Valuation of Treatment Systems: Economic, Environmental and Social Aspects -- 3 Results and Discussions -- 3.1 Water Allocation and Wastewater Generation -- 3.2 Raw Sewage Characteristics -- 3.3 Biofuel Prospects -- 3.4 Treatment Plant Efficiency -- 3.5 Valuation of Sewage Treatment Systems -- 3.5.1 Economic Evaluation -- 3.5.2 Environmental Evaluation -- 3.5.3 Social Evaluation -- 3.6 Sustainability of the Treatment Systems -- 3.7 Nutrient-Integrated Treatment Efficiency for the Various Sewage Treatment Systems -- 4 Conclusion -- References -- 5: The Role of Anaerobic Digestion in Algal Biorefineries: Clean Energy Production, Organic Waste Treatment, and Nutrient Loop Closure -- 1 Introduction -- 2 The Anaerobic Digestion Process -- 2.1 Anaerobic Process Stages -- 2.1.1 Hydrolysis -- 2.1.2 Acidogenic Phase -- 2.1.3 Acetogenic Phase -- 2.1.4 Methanogenic Phase -- 2.1.5 Formation of Hydrogen Sulfide -- 2.2 Process Parameters -- 2.2.1 pH and Alkalinity -- 2.2.2 Redox Potential -- 2.2.3 Temperature -- 2.2.4 Nutrients -- 2.2.5 Inhibitors -- 2.2.6 Mixing -- 2.2.7 Retention Time -- 2.2.8 Organic Loading Rate (OLR) -- 2.3 Biogas Recovery and Use -- 2.4 The Digestate -- 3 Biogas Production from Microalgae -- 3.1 Introduction -- 3.2 Microalgae as Energy Crop -- 3.2.1 Enhancement of Methane Yields. , 3.2.1.1 Pretreatments for Microalgal Biomass -- 3.2.1.1.1 Pretreatment Features: Organic Matter Solubilization and Structural Changes -- 3.2.1.1.2 Thermal Pretreatments -- 3.2.1.1.3 Chemical Pretreatments -- 3.2.1.1.4 Physical Pretreatment -- 3.2.1.1.5 Enzymatic Hydrolysis -- 3.2.1.2 Co-digestion -- 3.3 Anaerobic Digestion in Microalgae Biorefineries -- 3.3.1 Organic Waste Treatment and Clean Energy Production -- 3.3.2 Closing the Nutrient Loop -- 3.3.2.1 Biogas Upgrading -- 3.3.2.1.1 Methane Concentration -- 3.3.2.1.2 Carbon Dioxide Concentration -- 3.3.2.1.3 Hydrogen Sulfide Concentration -- 3.3.2.1.4 Oxygen Concentration in Upgraded Biogas -- 3.3.2.2 Digestate Recycling as Growth Medium -- 4 Conclusion and Future Prospects -- References -- 6: Algae-Based Biohydrogen: Current Status of Bioprocess Routes, Economical Assessment, and Major Bottlenecks -- 1 Introduction -- 2 Bioprocess Routes for Biohydrogen Production by Algae -- 2.1 Direct and Indirect Biophotolysis -- 2.1.1 Direct Biophotolysis -- 2.1.2 Indirect Biophotolysis -- 2.1.3 Factors Affecting Biophotolysis (BP) -- 2.1.3.1 Immobilization -- 2.1.3.2 pH -- 2.1.3.3 Carbon Source -- 2.1.3.4 Light -- 2.2 Dark Fermentation (DF) -- 2.2.1 Factors Affecting DF -- 2.2.1.1 Substrate -- 2.2.1.2 Inoculums -- 2.2.1.3 Temperature -- 2.2.1.4 pH -- 2.3 Factor Affecting Both BP and DF Bioprocess Routes -- 2.3.1 Reactors -- 2.3.1.1 Tubular Airlift and Bubble Column -- 2.3.1.2 Helical Tubular Bioreactor -- 2.3.1.3 Flat Plate Bioreactor -- 2.3.1.4 Fermentor Type of Bioreactor -- 3 Economic Stresses on Bioprocess Routes -- 4 Major Bottlenecks in Bioprocess Routes -- 4.1 R& -- D: In Growing Stage -- 4.1.1 Suitable Substrate: Demand in Search -- 4.1.2 Optimization of Parameters: Challenge from Lab Scale to Pilot Scale -- 4.2 Road to Commercialization. , 4.2.1 Reactors -- 5 Environmental Benefits of Biohydrogen Economy -- 6 Conclusions -- References -- 7: Bio-oil and Biodiesel as Biofuels Derived from Microalgal Oil and Their Characterization by Using Instrumental Techniques -- 1 Introduction -- 2 Bio-oil and Biodiesel: Characteristics and Components -- 3 Instruments for Characterization of Lipid in Microalgal Oil -- 3.1 Nile Red Fluorescence Method -- 3.2 PAM Fluorometry -- 3.3 Nuclear Magnetic Resonance (NMR) Spectroscopy -- 3.4 Gas Chromatography-Mass Spectrometry (GC-MS) -- 3.4.1 Gas Chromatography (GC) -- 3.4.2 Mass Spectrometry (MS) -- 3.5 Fourier Transform Infrared Spectrometer (FTIR) -- 4 Conclusions -- References -- 8: Remediation of Dyes from Aquatic Ecosystems by Biosorption Method Using Algae -- 1 Introduction -- 1.1 Aquatic Pollution -- 1.2 Dyes -- 1.2.1 Types of Dyes -- 1.2.2 Toxicity of Dyes -- 2 Removal of Dyes from Aquatic Ecosystem -- 2.1 Traditional Methods -- 2.2 Nonconventional Methods of Dye Removal -- 2.2.1 Adsorption -- 2.2.2 Biosorption -- 2.2.3 Phycoremediation -- 3 Biosorption Studies and Adsorption Kinetics -- 3.1 Biosorption by Macroalgae -- 3.2 Biosorption by Microalgae -- 3.3 Adsorption Isotherms -- 4 Conclusions -- References -- 9: Bioremediation and Decolourisation of Biomethanated Distillery Spent Wash -- 1 Introduction -- 1.1 Wastewater Generation and Characteristics -- 1.2 Profile of Lords Distillery Ltd., Nandganj, Ghazipur, UP, India -- 1.3 Challenges and R& -- D Focus Areas in Distillery Effluent Treatment -- 1.4 Treatment Processes Employed in Distilleries -- 1.4.1 Biological Treatment Processes -- 1.4.1.1 Anaerobic Biodegradation -- 1.4.1.2 Aerobic Biodegradation -- 1.4.2 Treatment of Distillery Effluent by Coagulation -- 1.5 Objective of Present Investigation -- 2 Materials and Methods -- 2.1 Wastewater. , 2.2 Coagulant Treatment -- 2.3 Microorganism and Inoculums -- 2.3.1 Flask Cultures -- 2.4 Decolourisation Assay -- 3 Results and Discussion -- 3.1 Biodegradation of Coagulated ABDE -- 3.2 Benefits of Algae Wastewater Treatment Processes -- 4 Conclusions -- References -- 10: Genetic Engineering Tools for Enhancing Lipid Production in Microalgae -- 1 Introduction -- 2 An Overview of Lipid Biosynthesis Pathways in Microalgae -- 3 TAG Biosynthesis in Microalgae -- 4 Genetic Engineering Approaches to Improve Lipid Synthesis in Microalgae -- 4.1 Forward Genetics Approach: Random and Insertional Mutagenesis -- 4.2 Reverse Genetic Approaches -- 4.3 Advancement in GE Approaches to Improve Lipid Synthesis in Microalgae -- 4.4 Bottlenecks in Microalgal GE Approaches and the Way Forward -- 5 Conclusions -- References -- 11: Phycoremediation of Emerging Contaminants -- 1 Introduction -- 1.1 Emerging Contaminants -- 1.1.1 Pharmaceutical and Personal Care Products (PPCP) -- 1.1.2 Pesticides -- 1.1.3 Endocrine Disruptors -- 1.2 Major Challenges in Conventional Wastewater Treatment in Removal of Emerging Contaminants -- 1.2.1 Low Levels and Limited Availability of Protocols for Identification and Quantification -- 1.2.2 Low Biodegradability -- 1.2.3 High Water Solubility -- 1.2.4 Solid Phase Partitioning -- 1.2.5 Metabolites -- 1.3 Bioremediation -- 1.3.1 Phytoremediation -- 1.3.2 Phycoremediation -- 2 Ecological Fate of Emerging Contaminants -- 3 Ecotoxicological Risks of Emerging Contaminants -- 4 Phycoremediation of Emerging Contaminants -- 4.1 Pharmaceutical Products -- 4.2 Personal Care Products -- 4.3 Surfactants -- 4.4 Persistent Organic Compounds -- 4.4.1 Polyaromatic Hydrocarbons -- 4.4.2 Polychlorinated Biphenyls (PCBs) -- 4.4.3 Pesticides -- 5 Phycoremediation: Limiting Factors -- 6 Conclusions -- References. , 12: Carbon Dioxide Sequestration by Microalgae: Biorefinery Approach for Clean Energy and Environment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...