GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Electronic books.  (2)
Publikationsart
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    New York, NY :Springer,
    Schlagwort(e): Science (General). ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (666 pages)
    Ausgabe: 1st ed.
    ISBN: 9781493925780
    Serie: Food Engineering Series
    DDC: 664/.028
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- The State ofWater andIts Impact onPharmaceutical Systems: Lipid-Based Drug Delivery Systems andAmorphous Solids -- 1 Introduction -- 2 Molecular Dynamics Simulations -- 3 Water Uptake, Distribution, andEffects onDrug Solubility inLipid Vehicles Composed ofTriglycerides andMonoglycerides -- 4 Water Uptake andIts Implications inanAmorphous Glass (PVP) -- 5 Water Distribution, Mobility, andEffects onTransbilayer Diffusion ofPermeants inLipid Bilayers -- 6 Conclusions -- References -- Food Preservation by Nanostructures-Water Interactions Control -- 1 Introduction -- 2 Parameters of Stability -- 2.1 Water Activity (aw) -- 2.2 Glass Transition Temperature (Tg) -- 3 Thermodynamic Parameters -- 4 Water Confined in Nanostructures -- 5 Minimum Entropy and Cooperatively Rearrangement Regions -- 6 Potential Application of Nanostructuration to Foods -- 7 Description of Food Morphology -- 8 Conclusions -- References -- Water and Food Appearance -- 1 Introduction -- 2 Potential Causes of Transparency/Opacity Changes -- 2.1 Dehydration or Rehydration -- 2.2 Appearance/Disappearance of Particles (Crystals/Bubbles Formation or Solids Dissolution) -- 3 Materials and Methodology for the Study of Appearance Properties -- 3.1 Materials -- 3.2 Chromatic Attributes -- 3.3 Opacity -- 3.4 Translucence -- 4 Translucence Changes -- 4.1 Fruit Products -- 4.2 Cereal Products -- 4.2.1 Transparentization by Refractive Index Matching -- 4.2.2 Correlation Between Reflectance and Chemical Markers of the Maillard Reaction -- 5 Conclusions -- 6 Future Work -- References -- Maillard Reaction inLimited Moisture andLow Water Activity Environment -- 1 Introduction -- 2 Materials andMethods -- 2.1 Preparation ofModel System -- 2.2 Color Parameters andAbsorbance Measurements -- 2.3 Kinetic Studies. , 2.4 Experimental Design andStatistical Analysis -- 3 Results andDiscussion -- 3.1 Preliminary Results -- 3.1.1 Color Development inControl -- 3.1.2 Determination ofSpectrumPeak -- 3.1.3 Effect ofMoisture Content intheColor Development -- 3.1.4 Color Parameters -- 3.1.5 Reaction Rate andKinetic Order -- 3.1.6 Reactivity ofReducing Sugars inMaillard Reaction -- 4 Conclusion andRecommendations forFuture Research -- References -- Carbohydrates andProteins asNonequilibrium Components of Biological Materials -- 1 Introduction -- 2 Dielectric andMechanical Relaxation Times -- 3 Fluidness Characteristics -- 4 Fluidness inFood Processing andStorage -- 4.1 Effects onMicrostructure -- 4.2 Stickiness andRelaxation Times -- 4.3 Component Crystallization -- 5 Conclusions -- References -- Low-Temperature Mobility of Water in Sugar Glasses: Insights from Thermally Stimulated Current Study -- 1 Introduction -- 2 Materials and Methods -- 2.1 Materials -- 2.2 Thermally Stimulated Current -- 2.3 Differential Scanning Calorimetry (DSC) -- 3 Results -- 4 Discussion -- 5 Conclusions -- References -- Functional Behavior ofDifferent Food Components asAffected by Water andPhysical State -- 1 Introduction -- 2 The Impact ofWater, Physical State, andMolecular Weight ontheDissolution ofCarbohydrates -- 3 The Impact ofWater andStructure onDissolution ofProteins -- 4 Conclusions -- References -- Effect ofDifferent Components ofEdible/Biodegradable Composite Films onWater Relationships inthePolymer Matrix -- 1 Introduction -- 2 Effect ofFilm Plasticizers onFilm Water Sorption Behavior -- 3 Effect ofLipids onWater Sorption Behavior ofHydrocolloid Films -- 4 Effect ofFilm Components onPhase Transitions -- 5 Final Remarks -- References -- Glass Transition Observed withCross-Linked Dextrans Containing aSmall Amount ofWater -- 1 Introduction -- 2 Materials andMethods -- 2.1 Materials. , 2.2 Sample Preparation -- 2.3 DSC Measurement -- 3 Results -- 4 Discussion -- 5 Conclusions -- References -- Sensorially and Instrumentally Detected Antiplastizicing Effect of Water in Cornflakes -- 1 Introduction -- 2 Materials and Methods -- 2.1 Samples -- 2.2 Glass Transition Measurement -- 2.3 Molecular Mobility -- 2.4 Mechanical Properties -- 2.5 Oral Texture Profile -- 3 Results and Discussion -- 3.1 Glass Transition and Molecular Mobility -- 3.2 Mechanical Properties -- 3.3 Oral Texture Measurements -- 3.4 Integrated Results -- 4 Conclusions -- References -- Characterization of a Hydrate-Dehydrate System with Critical Transitions in theTypical Range of Processing and Storage Conditions -- 1 Introduction -- 2 Materials andMethods -- 3 Results andDiscussion -- 4 Conclusions -- References -- Viscoelastic Sorption Behavior ofStarch andGluten -- 1 Introduction -- 2 Materials andExperimental Methods -- 3 Model -- 3.1 Viscoelastic Diffusion -- 3.2 Boundary Conditions andIsotherm -- 3.3 Rheological Model -- 4 Results andDiscussion -- 4.1 Isotherms -- 4.2 Dynamical Sorption -- 5 Conclusions -- References -- Molecular Weight Effects onEnthalpy Relaxation andFragility ofAmorphous Carbohydrates -- 1 Introduction -- 2 Materials andMethods -- 2.1 Differential Scanning Calorimetry (DSC) -- 3 Results andDiscussion -- 3.1 Glass Transition Temperature vs.Aging Conditions -- 3.2 Molecular Weight Dependence ofEnthalpy RelaxationTime -- 3.3 Fragility ofAmorphous Carbohydrates -- 4 Conclusions -- References -- Effect ofDehydration Conditions ontheBulk andSurface Properties oftheResulting Dehydrated Products -- 1 Introduction -- 2 Materials andMethods -- 2.1 Materials -- 2.2 Preparation oftheHydrate, Dehydrated, andAnhydrous Forms -- 2.3 Preparation ofAnhydrousForm -- 2.4 X-ray Powder Diffraction (XRPD) -- 2.5 Differential Scanning Calorimetry (DSC). , 2.6 Scanning Electronic Microscopy (SEM) -- 3 Results andDiscussion -- 4 Conclusions -- References -- Moisture Sorption Isotherms of Foods: Experimental Methodology, Mathematical Analysis, and Practical Applications -- 1 Introduction -- 2 Moisture Sorption Isotherms -- 2.1 Monolayer Moisture Content -- 2.2 Temperature and Composition Effects on Moisture Sorption Properties -- 2.2.1 Chemical Composition and Moisture Sorption Properties -- 2.2.2 Effect of Temperature on Sorption Isotherms -- 3 Experimental Methods for the Determination of Moisture Sorption Isotherms -- 3.1 Static Methods -- 3.2 Dynamic Methods -- 3.2.1 Dynamic Vapor Sorption Method (DVS) -- 3.2.2 Dynamic Dew Point Isotherm Method (DDI) -- 4 Modeling Sorption Isotherms -- 4.1 Brunauer-Emmett-Teller (BET) Equation (Brunauer et al. 1938) -- 4.2 Guggenheim, Anderson, and De Boer (GAB) Equation (van den Berg and Bruins 1981) -- 4.3 Halsey Equation (Halsey 1948) -- 4.4 Henderson Equation (Henderson 1952) -- 4.5 Kühn Equation (Kühn 1964) -- 4.6 Oswin Equation (Oswin 1946) -- 4.7 Lewicki Equation (Lewicki 1998, 2000) -- 4.8 Smith Equation (Smith 1947) -- 4.9 Peleg Equation (Peleg 1993) -- 5 Analysis of Applicability for Modeling of Food Sorption Isotherms -- 6 Models Used to Describe Food Moisture Sorption Isotherms -- 7 Thermodynamic Properties: Sorption Heat, Enthalpy (DeltaH), and Entropy (DeltaS) -- 8 Applications of Moisture Sorption Isotherms -- 9 Sorption Isotherms and Shelf Life Predictions Considering Parameter Variability -- 10 Final Remarks -- References -- Understanding Cryopreservation of Oyster Oocytes from a Physical Chemistry Perspective -- 1 Introduction -- 2 Effect of Rate of Cooling -- 2.1 Cryopreservation of Oyster Oocytes -- 2.1.1 Assessment of IIF by Cryomicroscopy -- 2.1.2 Assessment of IIF by Transmission Electron Microscopy (TEM). , 2.1.3 The Effect of Cooling Rates, Holding Times, and Plunging Temperatures on IIF and Post-Thaw Fertilization -- 2.2 Liposomes as a Membrane Model System for Freezing Studies -- 2.2.1 Effect of Freezing Temperatures and Cooling Rates on the Stability of EPC LUV -- 2.2.2 EPC at Various Holding Temperatures -- 2.2.3 Effect of Freezing Temperatures and Cooling Rates on the Stability of DPPC LUV -- 2.2.4 DPPC LUV at Various Holding Temperatures -- 3 Overall Summary -- References -- The Role ofWater intheCryopreservation ofSeeds -- 1 Introduction -- 2 Relationships Between Seed Structure andStorage Behavior -- 3 Mechanisms Implicated inDesiccation Tolerance ofSeeds -- 4 Subzero Storage Temperatures ofSeeds -- 5 Cryopreservation ofCitrus Seeds: A Case Study -- 6 Conclusions -- References -- Water Activity and Microorganism Control: Past and Future -- 1 Introduction -- 2 Microbial Growth and aw -- 3 Microbial Survival/Inactivation and Impact of aw -- 4 Mechanism of Action of Osmotic Stress -- 5 Water Activity Control: Future -- References -- On Modeling theEffect ofWater Activity onMicrobial Growth andMortality Kinetics -- 1 Introduction -- 2 Microbial Growth Curves -- 3 Chemical Changes andMicrobial Inactivation -- 4 Probabilistic Models -- 5 Concluding Remarks andFuture Challenges -- References -- Importance of Halophilic and Halotolerant Lactic Acid Bacteria in Cheeses -- 1 Introduction -- 1.1 Water Activity and Chemical Composition of Cheeses -- 1.2 Models Involving Salt Concentration in Cheeses -- 1.3 General Roles of Salt in Cheese -- 1.4 Halophilic and Halotolerant Microorganisms -- 1.5 Halophilic Lactic Acid Bacteria in Cheeses -- 2 Halotolerant Lactic Acid Bacteria in Mexican Cheeses -- 3 Modeling of Halotolerance -- 4 Conclusions -- References -- Influence of Water Activity and Molecular Mobility on Peroxidase Activity in Solution. , 1 Introduction.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    New York, NY :Springer,
    Schlagwort(e): Fruit-Processing. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (543 pages)
    Ausgabe: 1st ed.
    ISBN: 9781493933112
    Serie: Food Engineering Series
    DDC: 664.8
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Consumer Perception of Novel Technologies -- 1.1 Introduction -- 1.2 Consumer Attitudes Towards New Technologies -- 1.3 Factors That Influence Consumer Attitudes Towards New Technologies -- 1.4 Strategies for Changing Consumer Attitudes Towards New Technologies -- 1.5 Conclusions and Remaining Challenges -- References -- Chapter 2: Safety Issues on the Preservation of Fruits and Vegetables -- 2.1 State of the Art -- 2.2 Microbial Hazards -- References -- Chapter 3: Nutritional and Functional Attributes of Fruit Products -- 3.1 Introduction -- 3.2 Carotenoids -- 3.2.1 Effects of Thermal Processing -- 3.2.2 Effects of Minimal Processing -- 3.2.3 Effects of High Pressure Processing -- 3.2.4 Effects of High-Intensity Pulsed Electric Field Processing -- 3.3 Vitamin C -- 3.3.1 Effects of Thermal Processing -- 3.3.2 Effects of Minimal Processing -- 3.3.3 Effects of High Pressure Processing -- 3.3.4 Effects of High-Intensity Pulsed Electric Field Processing -- 3.4 Flavonoids -- 3.4.1 Effects of Thermal Processing -- 3.4.2 Effects of Minimal Processing -- 3.4.3 Effects of High Pressure Processing -- 3.5 Folates -- 3.5.1 Effects of Processing -- References -- Chapter 4: Minimal Processing of Fruits -- 4.1 Introduction -- 4.2 Physiological Aspects Affecting the Postharvest Life of Fruits -- 4.3 Minimal Processing Technologies Used in Fruit Preservation -- 4.3.1 Washing and Sanitizing of Fruits -- 4.3.1.1 Chlorine -- 4.3.1.2 Chlorine Dioxide -- 4.3.1.3 Acidified Sodium Chlorite -- 4.3.1.4 Hydrogen Peroxide -- 4.3.1.5 Peracetic Acid -- 4.3.1.6 Peroxyacetic Acid -- 4.3.1.7 Trisodium Phosphate -- 4.3.1.8 Electrolyzed Water -- 4.3.1.9 Ozone -- 4.3.2 Minimal Processing Methods to Extend Shelf-Life of Fresh-Fruits -- 4.3.2.1 Refrigeration -- 4.3.2.2 Natural Preservatives -- 4.3.2.2.1 Organic Acids. , 4.3.2.2.2 Essential Oils -- 4.3.2.3 Blanching -- 4.3.2.4 Ultraviolet Light -- 4.3.2.5 Irradiation -- 4.3.2.6 Pulsed Light -- 4.3.2.7 Ultrasound -- 4.3.2.8 High Hydrostatic Pressure -- 4.3.2.9 Food Packaging -- 4.3.2.9.1 Controlled Atmospheres -- 4.3.2.9.2 Modified Atmospheres -- 4.3.2.9.3 Edible Films and Coatings -- 4.4 Final Remarks -- References -- Chapter 5: The Hurdle Concept in Fruit Processing -- 5.1 Introduction -- 5.2 The Hurdle Concept -- 5.2.1 Basic Aspects -- 5.2.2 Most Commonly Used Hurdle Combinations -- 5.3 Research and Commercial Application: Examples of Combined Traditional and Novel Stressors -- 5.3.1 Cut and Whole Fruits -- 5.3.2 Juices -- 5.4 Recommendations -- 5.4.1 Microbial Behavior in Response to Stressors -- 5.4.2 Engineering Solutions -- 5.4.3 Support Studies for the Design of Preservation Techniques -- 5.5 Future Trends -- References -- Chapter 6: Cooling and Freezing of Fruits and Fruit Products -- 6.1 Cooling of Fruits -- 6.1.1 Introduction -- 6.1.2 Precooling Treatments and Refrigeration -- 6.1.2.1 Precooling -- 6.1.2.2 Refrigeration -- 6.1.3 Controlled and Modified Atmosphere -- 6.1.3.1 Carbon Dioxide and Oxygen -- 6.1.3.2 Other Atmospheres -- 6.1.3.2.1 Atmospheres with O2 at Super-Atmospheric Concentrations -- 6.1.3.2.2 Hypobaric Storage -- 6.1.3.2.3 Use of Other Gases -- 6.1.4 Novel Technologies: Thermal Treatments, UV-C Irradiation -- 6.1.4.1 Thermal Treatments (Heat Treatment, Heat Shock) -- 6.1.4.2 UV-C Irradiation -- 6.1.5 Minimally Processed Fruits -- 6.1.6 Edible Coatings -- 6.2 Freezing of Fruits -- 6.2.1 The Freezing Process: Ice Formation -- 6.2.2 Homogeneous and Heterogeneous Nucleation -- 6.2.3 Crystal Growth -- 6.2.4 Freezing Curves -- 6.2.5 Initial Freezing Point -- 6.2.6 State Diagram -- 6.2.7 Freezing Rate -- 6.2.8 Structure of Vegetable Tissue -- 6.2.9 Intracellular and Extracellular Ice Formation. , 6.2.10 Freezing Times -- 6.2.11 Freezing Equipment -- 6.2.12 Effect of Freezing and Frozen Storage on Quality Changes in Fruits -- 6.2.12.1 Physical Modifications -- 6.2.12.2 Chemical Modifications -- 6.2.13 Nutritional Quality of Frozen Fruits -- 6.2.14 Microbial Stability of Frozen Foods -- 6.2.15 Preparatory Operations for Freezing -- 6.2.16 Pre-freeze Treatments -- 6.2.16.1 Pretreatments of Fruits Using Sugar Syrups -- 6.2.16.2 Dehydrofreezing -- 6.2.17 Recommended Packaging and Industrial Freezing Methods for Fruits -- 6.2.18 Shelf-Life of Frozen Fruits -- 6.2.19 New Trends in Freezing Technology -- References -- Chapter 7: Thermal Drying of Foods -- 7.1 Introduction -- 7.2 Drying Mechanisms -- 7.3 Drying Equipment and Design -- 7.4 Drying Limitations of Conventional Dryers -- 7.5 Challenges in Drying R& -- D -- 7.6 R& -- D Opportunities in Drying -- 7.6.1 Development of Innovative Drying Technologies -- 7.6.2 Process Improvements of Existing Drying Technologies -- 7.6.2.1 Airflow -- 7.6.2.2 Temperature -- 7.6.2.3 Relative Humidity -- 7.6.2.4 Design and Operational Practices -- 7.7 Modelling and Optimisation -- 7.8 Future Directions -- References -- Chapter 8: Membrane Technologies for Fruit Juice Processing -- 8.1 Introduction -- 8.2 Membrane Processes -- 8.2.1 Pressure-Driven Membrane Processes -- 8.2.2 Electrical Membrane Processes -- 8.2.3 Concentration-Driven Membrane Processes -- 8.2.4 Interests and Limits -- 8.3 Applications of Membrane Processes to Fruit Juices -- 8.3.1 Potentialities of Membrane Processes Applied to Fruit Juices -- 8.3.2 Water Removal: Concentration -- 8.3.2.1 Concentration by Pressure-Driven Membrane Processes -- 8.3.2.2 Concentration Using Membrane Contactors -- 8.3.2.3 Concentration Using Direct Osmosis -- 8.3.3 Solid/Liquid Separation: Clarification and Microbial Stabilization -- 8.3.3.1 Impact on Quality. , 8.3.3.2 Engineering Aspects and Costs -- 8.3.3.3 Membrane Cleaning -- 8.3.4 Modification of Solutes Composition -- 8.3.4.1 Acidity Modulation -- 8.3.4.2 Phenolic Profile Modulation -- 8.3.5 Recovery of Functional Compounds from Juices or by-Products -- 8.3.5.1 Carotenoids -- 8.3.5.2 Phenolics -- 8.3.5.3 Aroma Compounds -- 8.3.6 Endogenous Enzyme Inhibition -- 8.4 Conclusion -- References -- Chapter 9: Decision Aid Tools for the Preservation of Fruits by Modified Atmosphere Packaging -- 9.1 Introduction -- 9.2 Constitution of Databases -- 9.2.1 Database on Fresh Fruits -- 9.2.1.1 Data on Optimal Storage Conditions -- 9.2.1.2 Data on Respiration -- 9.2.1.3 Data on Transpiration and Ethylene Production -- 9.2.2 Database on Packaging Materials -- 9.3 MAP Optimization Procedure -- 9.3.1 Mass Balance Model for Gas Exchanges -- 9.3.2 Mass Balance Model for Moisture Exchanges -- 9.3.3 Implementation of Temperature Variation -- 9.3.4 Implementation of Material Structures -- 9.4 Computing Advances to Develop Decision Aid Tool -- 9.5 Concluding Remarks -- References -- Chapter 10: Frying of Foods -- 10.1 Introduction -- 10.1.1 The Savory Snack Products Market and new Trends -- 10.1.2 Traditional Processing Technologies of Savory Snacks -- 10.1.3 Regular Fried Snacks -- 10.1.4 Novel Fried Snacks -- 10.2 Deep-Fat Frying of Food -- 10.2.1 History -- 10.2.2 The Frying Process -- 10.2.3 Frying Equipment -- 10.2.4 Oil Absorption Kinetics -- 10.2.5 Effect of Processing Conditions on Food and Oil Quality -- 10.2.5.1 Composite Structure Development -- 10.2.5.2 Beneficial Compounds Degradation and Development of Toxic Compounds -- 10.2.5.3 Color and Acrylamide Formation -- 10.2.5.4 Frying Oil Degradation -- 10.3 Vacuum Frying of Foods -- 10.3.1 History -- 10.3.2 Industrial Equipment -- 10.3.3 Vacuum and Atmospheric Frying Comparison. , 10.3.4 Oil Absorption During Vacuum Frying -- 10.3.5 Effect of Vacuum Frying Processing Conditions on the Quality of Food and Frying Oil -- 10.3.5.1 Composite Structure Development -- 10.3.5.2 Important Nutritional Compounds and Natural Color Preservation -- 10.3.5.3 Color and Acrylamide Formation -- 10.3.5.4 Sensory Properties of Vacuum-Fried Products -- 10.3.5.5 Frying Oil Degradation -- 10.3.6 New Trends -- References -- Chapter 11: Power Ultrasound Treatment of Fruits and Fruit Products -- 11.1 Introduction -- 11.2 Principles of Power Ultrasound Treatment -- 11.2.1 Ultrasound Generation -- 11.2.2 Ultrasound Treatment Apparatus -- 11.2.3 Mode of Action -- 11.3 Surface Decontamination -- 11.4 Postharvest Quality Enhancement -- 11.5 Ultrasound in Fruit Juice Processing -- 11.5.1 Microbial Inactivation -- 11.5.2 Enzyme Inactivation -- 11.5.3 Effects of Ultrasound Treatment on Juice Quality -- 11.6 Ultrasound-Assisted Drying of Fruits -- 11.7 Extraction of Value-Added Chemicals from Fruit and Fruit Products -- 11.8 Other Applications -- 11.8.1 Pest Control -- 11.8.2 Blanching -- 11.9 Conclusion -- References -- Chapter 12: Fruit Preservation and Design of Functional Fruit Products by Vacuum Impregnation -- 12.1 Introduction -- 12.2 Mass Transfer Mechanisms in Vacuum Impregnation Processes -- 12.3 Factors Affecting Impregnation Process Effectiveness -- 12.3.1 Effect of Pressure and Temperature on Vacuum Impregnation Effectiveness -- 12.4 Solution Composition and the Impregnation Process -- 12.4.1 Impregnation with Sugars and Salts -- 12.4.2 Impregnation with Minerals -- 12.4.3 Impregnation with Phenolic Compounds -- 12.4.4 Impregnation with Vitamins -- 12.4.5 Impregnation with Microorganisms -- 12.5 Final Remarks -- References -- Chapter 13: High Pressure Processing of Fruit Products -- 13.1 Introduction. , 13.2 Principles of High Pressure Processing (HPP).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...