GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 414 (1989), S. 346-350 
    ISSN: 1432-2013
    Keywords: Sorbitol ; Organic osmolytes ; Inner medullary collecting duct ; Aldose reductase ; Diabetes mellitus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Intracellular accumulation of sorbitol, generated fromd-glucose via the aldose reductase pathway, is thought to play an important role in diabetic complications such as lens cataracts and neuropathy. In order to elucidate the effect of diabetes on the renal inner medulla, another sorbitol-rich tissue, male Wistar rats were treated with a single dose of streptozotocin (60 mg/kg body weight, i.p.). Six wecks later total inner medullary tissue (IM) or isolated inner medullary collecting duct (IMCD) cells were prepared. In diabetic IM tissue, sorbitol content was 1.8-fold higher than in control IM tissue (134±17 vs. 74±22 μmol/g tissue protein). Sorbitol production in both normal and diabetic IMCD cells was strongly dependent on extracellulard-glucose concentration. In normal cells, for example, sorbitol production was 90±9 μmol sorbitol/g protein x h at 45 mMd-glucose compared to 13±1 μmol/g protein x h at 5 mM. At identicald-glucose concentrations sorbitol synthesis in diabetic IMCD cells was, however, always significantly higher than in control cells (122% of control at 15 mM and 126% of control at 45 mM). In addition, aldose reductase activity in diabetic IM was found to be augmented. The maximal velocity was 4.2 times higher (97±22 U/g protein vs. 23±7 U/g protein) while theK m of the enzyme remained unchanged. Membrane permeability for sorbitol or the response to changes in extracellular osmolarity was not significantly different in diabetic IMCD cells and normal cells with correspondingly high intracellular sorbitol concentrations. Similarly the kinetic parameters ofd-glucose uptake were not altered by streptozotocin treatment. These results suggest that increased medullary sorbitol content in diabetic rats is a result of increased sorbitol synthesis due to a higher extracellulard-glucose concentration and augmented aldose reductase activity in face of an unaltered sorbitol permeability of the plasma membrane.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 433 (1996), S. 245-253 
    ISSN: 1432-2013
    Keywords: Key words Osmoregulation ; Regulatory volume decrease ; Cytosolic calcium ; Calcium stores ; IP3 ; Arachidonic acid ; Collecting duct
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In rat inner medullary collecting duct (IMCD) cells in primary culture, hypotonic stress induces Ca2+ transients consisting of an early peak phase caused by a Ca2+ release from intracellular stores and a subsequent plateau phase that involves Ca2+ entry from the extracellular milieu. In the present study, the mechanisms by which cell swelling is transduced into the Ca2+ release were investigated. The free intracellular Ca2+ concentration ([Ca2+]i) was measured using the fluorescent dye fura-2 and cell volume using a confocal laser scanning microscope. In control experiments, after reduction of extracellular osmolarity from 600 to 300 mosmol/l, by omission of sucrose, [Ca2+]i rapidly increased from 106 ± 9 nmol/l to a peak value of 405 ± 22 nmol/l (P≤ 0.05) and thereafter reached a steady-state of 230 ± 23 nmol/l. In low-Ca2+ conditions (10 nmol/l), the reduction of osmolarity evoked only a transient increase of [Ca2+]i by 182 ± 11 nmol/l (P≤ 0.05), which reflected Ca2+ release from intracellular stores. Hyposmotic stress had no effect on inositol 1,4,5-triphosphate (IP3) production measured by a [3H]IP3 radioreceptor assay. Preincubation with 100 μmol/l ETYA (a non-metabolisible derivative of arachidonic acid) reduced the Ca2+ response to hyposmotic stress under high and low Ca2+ conditions (87 and 85% inhibition respectively) as well as the regulatory volume decrease (RVD). Extracellular application of arachidonic acid in isotonic medium led to an increase in [Ca2+]i under high and low Ca2+ conditions. Pretreatment of IMCD cells with 50 μg/ml D609 (a phosphatidylcholine-directed phospholipase C inhibitor) or with 200 μmol/l propranolol (a phosphatidate phosphohydrolase inhibitor) reduced the hypotonic Ca2+ response more strongly than pretreatment with 5 μmol/l BPhB (a phospholipase A2 inhibitor). The Ca2+ response was also suppressed after preincubation with 200 μmol/l RHC 80267 (a diacylglycerol lipase inhibitor). Preincubation with 50 ng/ml pertussis toxin (a G-protein inhibitor) reduced the transient component of the Ca2+ response partially. We conclude that G-proteins, phosphatidylcholine-directed phospholipase C, phospholipase A2, diacylglycerol lipase and arachidonic acid, but not IP3, are involved in the mechanisms by which Ca2+ is released from the intracellular stores during RVD in IMCD cells.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...