GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Insect Physiology 57 (2011): 665-675, doi:10.1016/j.jinsphys.2011.03.007.
    Description: Calanoid copepods, such as Calanus finmarchicus, are a key component of marine food webs. C. finmarchicus undergoes a facultative diapause during juvenile development, which profoundly affects their seasonal distribution and availability to their predators. The current ignorance of how copepod diapause is regulated limits understanding of copepod population dynamics, distribution, and ecosystem interactions. Heat shock proteins (Hsps) are a superfamily of molecular chaperones characteristically upregulated in response to stress conditions and frequently associated with diapause in other taxa. In this study, 8 heat shock proteins were identified in C. finmarchicus C5 copepodids (Hsp21, Hsp22, p26, Hsp90, and 4 forms of Hsp70), and expression of these transcripts was characterized in response to handling stress and in association with diapause. Hsp21, Hsp22, and Hsp70A (cytosolic subfamily) were induced by handling stress. Expression of Hsp70A was also elevated in shallow active copepodids relative to deep diapausing copepodids, which may reflect induction of this gene by varied stressors in active animals. In contrast, expression of Hsp22 was elevated in deep diapausing animals; Hsp22 may play a role both in short-term stress responses and in protecting proteins from degradation during diapause. Expression of most of the Hsps examined did not vary in response to diapause, perhaps because the diapause of C. finmarchicus is not associated with the extreme environmental conditions (e.g., freezing, desiccation) experienced by many other taxa, such as overwintering insects or Artemia cysts.
    Description: Funding for AMA was provided by the WHOI Summer Student Fellowship Program and an EPA STAR fellowship.
    Keywords: Copepod ; Crustacean ; Diapause ; Heat shock protein ; Stress response
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Zoology 11 (2014): 91, doi:10.1186/s12983-014-0091-8.
    Description: Calanus finmarchicus, a highly abundant copepod that is an important primary consumer in North Atlantic ecosystems, has a flexible life history in which copepods in the last juvenile developmental stage (fifth copepodid, C5) may either delay maturation and enter diapause or molt directly into adults. The factors that regulate this developmental plasticity are poorly understood, and few tools have been developed to assess the physiological condition of individual copepods. We sampled a cultured population of C. finmarchicus copepods daily throughout the C5 stage and assessed molt stage progression, gonad development and lipid storage. We used high-throughput sequencing to identify genes that were differentially expressed during progression through the molt stage and then used qPCR to profile daily expression of individual genes. Based on expression profiles of twelve genes, samples were statistically clustered into three groups: (1) an early period occurring prior to separation of the cuticle from the epidermis (apolysis) when expression of genes associated with lipid synthesis and transport (FABP and ELOV) and two nuclear receptors (ERR and HR78) was highest, (2) a middle period of rapid change in both gene expression and physiological condition, including local minima and maxima in several nuclear receptors (FTZ-F1, HR38b, and EcR), and (3) a late period when gonads were differentiated and expression of genes associated with molting (Torso-like, HR38a) peaked. The ratio of Torso-like to HR38b strongly differentiated the early and late groups. This study provides the first dynamic profiles of gene expression anchored with morphological markers of lipid accumulation, development and gonad maturation throughout a copepod molt cycle. Transcriptomic profiling revealed significant changes over the molt cycle in genes with presumed roles in lipid synthesis, molt regulation and gonad development, suggestive of a coupling of these processes in Calanus finmarchicus. Finally, we identified gene expression profiles that strongly differentiate between early and late development within the C5 copepodid stage. We anticipate that these findings and continued development of robust gene expression biomarkers that distinguish between diapause preparation and continuous development will ultimately enable novel studies of the intrinsic and extrinsic factors that govern diapause initiation in Calanus finmarchicus.
    Description: This work was supported by grant number OCE-1132567 from the National Science Foundation to MFB and AMT. Additional supported was provided by WHOI Early Career Scientist Awards provided to MFB and AMT.
    Keywords: Arthropod ; Crustacean ; Gene expression ; Molt cycle ; Transcriptomics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: text/plain
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...