GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hernandez-Fernandez, L., Gonzalez de Zayas, R., Weber, L., Apprill, A., & Armenteros, M. Small-scale variability dominates benthic coverage and diversity across the Jardines de la Reina, Cuba coral reef system. Frontiers in Marine Science, 6, (2019): 747, doi: 10.3389/fmars.2019.00747.
    Description: Coral reefs are complex and biodiverse ecosystems that are undergoing significant change. Understanding reef composition and biodiversity at multiple spatial scales is necessary to track both large-scale and more subtle ecosystem changes. The Jardines de la Reina (JR) archipelago, located offshore of the island of Cuba, contains the largest marine protected area (MPA) in the Caribbean Sea but lacks multi-scale studies. In this contribution, we documented the diversity of scleractinian corals, octocorals, algae, and sponges across nested spatial scales spanning four orders of magnitude (101–105 m). In addition, we tested the hypothesis that species diversity followed a gradient along the ca. 200 km of reef tract. Across the archipelago, we examined benthic cover and species diversity within 255 photo-quadrats (25 × 25 cm) at 13 fore reef sites (two sampling locations per site, and 10 photo-quadrats per location). Small-scale (101 m) variability between photo-quadrats characterized the coral reef community structure in JR compared with local- (102 m) and mesoscale (104–105 m) variability. This finding suggests that biological processes (e.g., recruitment, competition) had primacy over hydrodynamics for driving the differences in reef community composition. However, the dominance of algae and low cover and diversity of scleractinian corals suggests the pervasive effects of global change on coral communities despite potential benefits provided by the MPA (e.g., oligotrophy and abundance of herbivores). There was no gradient of benthic community structure along the fore reef tract of JR; instead, a patchy distribution occurred in response to more subtle drivers acting at local scales. Overall, our multi-scale comparison was useful for differentiating the impacts of processes potentially impacting the JR reefs, thus providing important information to understand how reef communities are impacted by different environmental and anthropogenic stressors, and the potential benefits of MPAs.
    Description: This work was supported by the Dalio Foundation’s Dalio Ocean Initiative (now “OceanX”).
    Keywords: Coral reef ; Caribbean Sea ; Protected area ; Species richness ; β-diversity ; Spatial scale
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Becker, C. C., Weber, L., Suca, J. J., Llopiz, J. K., Mooney, T. A., & Apprill, A. Microbial and nutrient dynamics in mangrove, reef, and seagrass waters over tidal and diurnal time scales. Aquatic Microbial Ecology, 85, (2020): 101-119, https://doi.org/10.3354/ame01944.
    Description: In coral reefs and adjacent seagrass meadow and mangrove environments, short temporal scales (i.e. tidal, diurnal) may have important influences on ecosystem processes and community structure, but these scales are rarely investigated. This study examines how tidal and diurnal forcings influence pelagic microorganisms and nutrient dynamics in 3 important and adjacent coastal biomes: mangroves, coral reefs, and seagrass meadows. We sampled for microbial (Bacteria and Archaea) community composition, cell abundances and environmental parameters at 9 coastal sites on St. John, US Virgin Islands that spanned 4 km in distance (4 coral reefs, 2 seagrass meadows and 3 mangrove locations within 2 larger bays). Eight samplings occurred over a 48 h period, capturing day and night microbial dynamics over 2 tidal cycles. The seagrass and reef biomes exhibited relatively consistent environmental conditions and microbial community structure but were dominated by shifts in picocyanobacterial abundances that were most likely attributed to diel dynamics. In contrast, mangrove ecosystems exhibited substantial daily shifts in environmental parameters, heterotrophic cell abundances and microbial community structure that were consistent with the tidal cycle. Differential abundance analysis of mangrove-associated microorganisms revealed enrichment of pelagic oligotrophic taxa during high tide and enrichment of putative sediment-associated microbes during low tide. Our study underpins the importance of tidal and diurnal time scales in structuring coastal microbial and nutrient dynamics, with diel and tidal cycles contributing to a highly dynamic microbial environment in mangroves, and time of day likely contributing to microbial dynamics in seagrass and reef biomes.
    Description: This research was supported by NSF awards OCE-1536782 to T.A.M., J.K.L., and A.A. and OCE-1736288 to A.A., NOAA Cooperative Institutes award NA19O AR 4320074 to A.A. and E. Kujawinski and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research to A.A.
    Keywords: Tide ; Picoplankton ; Mangrove ; Coral reef ; Seagrass ; Time series ; 16S rRNA gene
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Apprill, A., Holm, H., Santoro, A. E., Becker, C., Neave, M., Hughen, K., Richards Dona, A., Aeby, G., Work, T., Weber, L., & McNally, S. Microbial ecology of coral-dominated reefs in the Federated States of Micronesia. Aquatic Microbial Ecology, 86, (2021): 115–136, https://doi.org/10.3354/ame01961.
    Description: Microorganisms are central to the functioning of coral reef ecosystems, but their dynamics are unstudied on most reefs. We examined the microbial ecology of shallow reefs within the Federated States of Micronesia. We surveyed 20 reefs surrounding 7 islands and atolls (Yap, Woleai, Olimarao, Kosrae, Kapingamarangi, Nukuoro, and Pohnpei), spanning 875053 km2. On the reefs, we found consistently higher coral coverage (mean ± SD = 36.9 ± 22.2%; max 77%) compared to macroalgae coverage (15.2 ± 15.5%; max 58%), and low abundances of fish. Reef waters had low inorganic nutrient concentrations and were dominated by Synechococcus, Prochlorococcus, and SAR11 bacteria. The richness of bacterial and archaeal communities was significantly related to interactions between island/atoll and depth. High coral coverage on reefs was linked to higher relative abundances of Flavobacteriaceae, Leisingera, Owenweeksia, Vibrio, and the OM27 clade, as well as other heterotrophic bacterial groups, consistent with communities residing in waters near corals and within coral mucus. Microbial community structure at reef depth was significantly correlated with geographic distance, suggesting that island biogeography influences reef microbial communities. Reefs at Kosrae Island, which hosted the highest coral abundance and diversity, were unique compared to other locations; seawater from Kosrae reefs had the lowest organic carbon (59.8-67.9 µM), highest organic nitrogen (4.5-5.3 µM), and harbored consistent microbial communities (〉85% similar), which were dominated by heterotrophic cells. This study suggests that the reef-water microbial ecology on Micronesian reefs is influenced by the density and diversity of corals as well as other biogeographical features.
    Description: Samples were collected under Federated States of Micronesia collection permits FM12-11-03S and FM12-11-05S. This project was supported by funding to A.A.: Woods Hole Oceanographic Institution Access to the Sea, Dalio Family Foundation, Andrew W. Mellon Foundation Endowed Fund for Innovative Research, and National Science Foundation awards OCE- 1233612 and OCE-1736288. A.E.S. was supported by startup funds from the University of Maryland Center for Environmental Sciences. K.H. obtained funding from WHOI Access to the Sea and the Dalio Explore Foundation that supported this cruise.
    Keywords: Coral reef ; Microbiology ; Micronesia ; Oligotrophic ; Cyanobacteria ; SSU rRNA gene
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...