GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Black Sea  (2)
  • Compound-specific radiocarbon dating  (2)
Publikationsart
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Blackwell, 2007. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Environmental Microbiology 9 (2007): 1001-1016, doi:10.1111/j.1462-2920.2006.01227.x.
    Beschreibung: Within the upper 400 m at western, central, and eastern stations in the world’s largest stratified basin, the Black Sea, we studied the qualitative and quantitative distribution of putative nitrifying Archaea based on their genetic markers (16S rDNA, amoA encoding for the alfa-subunit of archaeal ammonia monooxygenase), and crenarchaeol, the specific glycerol diphytanyl glycerol tetraether (GDGT) of pelagic Crenarchaeota within the Group I.1a. Marine Crenarchaeota were the most abundant Archaea (up to 98% of the total archaeal 16S rDNA copies) in the suboxic layers with oxygen levels as low as 1 μM including layers where previously anammox bacteria were described (Kuypers et al., 2003). Different marine crenarchaeotal phylotypes (both 16S rDNA and amoA) were found at the upper part of the suboxic zone as compared to the base of the suboxic zone and the upper 15-30 m of the anoxic waters with prevailing sulfide concentrations of up to 30 μM. Crenarchaeol concentrations were higher in the sulfidic chemocline as compared to the suboxic zone. These results indicate an abundance of putative nitrifying Archaea at very low oxygen levels within the Black Sea and might form an important source of nitrite for the anammox reaction.
    Beschreibung: This work was supported by a grant from the Netherlands Organization for Scientific Research (VENI Innovational Research Grant nr. 813.13.001 to MJLC), an U. S. National Science Foundation grant OCE0117824 to SGW and the Spinoza award to JSSD, which we greatly acknowledge.
    Schlagwort(e): Black Sea ; Ammonia oxidizing Archaea ; amoA ; Crenarchaeol ; DGGE ; Quantitative real-time PCR
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2006): PA1005, doi:10.1029/2005PA001188.
    Beschreibung: Holocene sea surface temperatures (SST) of the Black Sea have been reconstructed using sedimentary C37 unsaturated alkenones assumed to be derived from the coccolithophorid haptophyte Emiliania huxleyi, whose fossil coccoliths are an important constituent of the unit I sediments. However, alkenones can also be biosynthesized by haptophyte species that do not produce microscopic recognizable coccoliths. A species-specific identification of haptophytes is important in such U 37 K′-based past SST reconstructions since different species have different alkenone-SST calibrations. We showed that 18S rDNA of E. huxleyi made up only a very small percentage (less than 0.8%) of the total eukaryotic 18S rDNA within the up to 3600-year-old fossil record obtained from the depocenter (〉2000 m) of the Black Sea. The predominant fossil 18S rDNA was derived from dinoflagellates (Gymnodinium spp.), which are predominant members of the summer phytoplankton bloom in the modern Black Sea. Using a polymerase chain reaction/denaturing gradient gel electrophoresis method selective for haptophytes, we recovered substantial numbers of a preserved 458-base-pair (bp)-long 18S rDNA fragment of E. huxleyi from the Holocene Black Sea sediments. Additional fossil haptophyte sequences were not detected, indicating that the E. huxleyi alkenone-SST calibration can be applied for at least the last ∼3600 years. The ancient E. huxleyi DNA was well protected against degradation since the DNA/alkenone ratio did not significantly decrease throughout the whole sediment core and 20% of ∼2700-year-old fossil E. huxleyi DNA was still up to 23,000 base pairs long. We showed that fossil DNA offers great potential to study the Holocene paleoecology and paleoenvironment of anoxic deep-sea settings in unprecedented detail.
    Beschreibung: This work was supported by a grant from the Netherlands Organization for Scientific Research (NWO) (Open Competition Program 813.13.001 to M.J.L.C.) and NSF grant OCE0117824 to S.G.W., which we greatly appreciate.
    Schlagwort(e): Fossil DNA ; DGGE ; Paleoecology ; Holocene ; Black Sea ; Ancient haptophytes
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA2012, doi:10.1029/2003PA000927.
    Beschreibung: The radiocarbon contents of various biomarkers extracted from the varve-counted sediments of Saanich Inlet, Canada, were determined to assess their applicability for dating purposes. Calibrated ages obtained from the marine planktonic archaeal biomarker crenarchaeol compared favorably with varve-count ages. The same conclusion could be drawn for a more general archaeal biomarker (GDGT-0), although this biomarker proved to be less reliable due to its less-specific origin. The results also lend support to earlier indications that marine crenarchaeota use dissolved inorganic carbon (DIC) as their carbon source. The average reservoir age offset ΔR of 430 years, determined using the crenarchaeol radiocarbon ages, varied by ±110 years. This may be caused by natural variations in ocean-atmosphere mixing or upwelling at the NE Pacific coast but variability may also be due to an inconsistency in the marine calibration curve when used at sites with high reservoir ages.
    Beschreibung: This work was supported by the Netherlands Organization for Scientific Research (NWO) and NSF grants OCE-9907129 and OCE-0137005 (Eglinton).
    Schlagwort(e): Compound-specific radiocarbon dating ; Crenarchaeol ; Reservoir age ; NE Pacific ; Saanich Inlet
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q09004, doi:10.1029/2007GC001603.
    Beschreibung: Organic matter accumulation and burial on the Namibian shelf and upper slope are spatially heterogeneous and strongly controlled by lateral transport in subsurface nepheloid layers. Much of the material deposited in depo-centers on the slope ultimately derives from the shelf. Supply of organic matter from the shelf involves selective transport of organic matter. We studied these selective transport processes by analyzing the radiocarbon content of co-occurring sediment fractions. Here we present radiocarbon data for total organic carbon as well as three tracers of surface ocean productivity (phytoplankton-derived alkenones, membrane lipids of pelagic crenarchaeota (crenarchaeol), and calcareous microfossils of planktic foraminifera) in core-top and near-surface sediment samples. The samples were collected on the Namibian margin along a shelf-slope transect (85 to 1040 m) at 24°S and from the upper slope depo-center at 25.5°S. In core-top sediments, alkenone ages gradually increased from modern to 3490 radiocarbon years with distance from shore and with water depth. Crenarchaeol, while younger than alkenones, also increased in age with distance offshore. It was concluded that the observed ages were a consequence of cross-shelf transport and associated aging of organic matter. Radiocarbon ages of preserved lipid biomarkers in sediments thus at least partially depend on the relative amount of laterally supplied, pre-aged material present in a sample, highlighting the importance of nepheloid transport for the sedimentation of organic matter over the Namibian margin.
    Beschreibung: This work was funded by NSF grant OCE- 0327405 to T.I.E. and by a Spinoza grant to J.S.S.D. from NWO.
    Schlagwort(e): Compound-specific radiocarbon dating ; Sediment transport
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...