GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Analysis; Atlantic; Atlantic_Larval_Dispersal_Modelling_Experiment; Barbados_Prism_Kick_em_Jenny_crater_(KJC); Barbados_Prism_Trinidad_prism_(TRI); Barbados Prism; Bathymodiolus; Binary Object; Binary Object (File Size); Binary Object (Media Type); Cold seeps; DATE/TIME; ELEVATION; Equatorial Atlantic belt; Event label; EXP; Experiment; Experiment duration; File content; Gigantidas; Gulf_of_Guinea_Guiness_(GUIN); Gulf_of_Guinea_Nigeria_margin_(NM); Gulf_of_Guinea_West_Africa_margin_(WAM); Gulf_of_Mexico_Alaminos_Canyon_(AC); Gulf_of_Mexico_Brine_Pool_(BP); Gulf_of_Mexico_Louisiana_Slope_(LS); Gulf of Guinea; Gulf of Mexico; iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; larval dispersal; LATITUDE; Location; LONGITUDE; Mid-Atlantic_Ridge_Logatchev_seeps_(LOG); Mid-Atlantic Ridge; Model; Mussel; N_Mid-Atlantic_Ridge_Atlantis_Fracture_Zone_(LOST); NE_Atlantic_margin_Gulf_of_Cadiz_(GC); NE_Atlantic_margin_SWIM_fault_(SWIM); NE Atlantic margin; North_Brazil_margin_Amazon_fan_(AM); North Atlantic; North Brazil margin; North Mid-Atlantic Ridge; Ocean and sea region; Particles; South_Brazil_margin_Sao_Paulo_1_(SP); South_Brazil_margin_Sao_Paulo_2_(SPD); South Brazil margin; Speed, swimming; Temperature, water; US_Atlantic_Margin_Baltimore_Canyon_(BC); US_Atlantic_Margin_Bodie_Island_(BI); US_Atlantic_Margin_New_England_(NE); US_Atlantic_Margin_Norfolk_Canyon_(NC); US Atlantic Margin; West_Africa_Margin_Arguin_bank_(ARG); West_Africa_Margin_Cadamostro_Seamount_(CS); West Africa Margin  (1)
  • Atmosphere-ocean interaction  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2024-04-20
    Description: These data aim at evaluating the hypothesis of long-distance dispersal across the North Atlantic and the Equatorial Atlantic belt for the cold seep mussels Gigantidas childressi, G. mauritanicus, Bathymodiolus heckerae and B. boomerang. We combined mitochondrial Cox1 barcoding of some mussel specimens from both sides of the Atlantic (American vs European/African margins) with larval dispersal trajectories simulated from the VIKING20X model of the Atlantic circulation at a spatial scale not yet investigated. Larval dispersal modelling data correspond to transports of larvae over one year in surface waters from 21 geographic localities over 5 consecutive years (2015, 2016, 2017, 2018 and 2019) and 5 spawning dates (November, December, January, February and March) per year. Genetic data correspond to the geo-referenced sequences obtained for the 4 mussel species from some of the localities where larvae have been released during the modelling approach.
    Keywords: Analysis; Atlantic; Atlantic_Larval_Dispersal_Modelling_Experiment; Barbados_Prism_Kick_em_Jenny_crater_(KJC); Barbados_Prism_Trinidad_prism_(TRI); Barbados Prism; Bathymodiolus; Binary Object; Binary Object (File Size); Binary Object (Media Type); Cold seeps; DATE/TIME; ELEVATION; Equatorial Atlantic belt; Event label; EXP; Experiment; Experiment duration; File content; Gigantidas; Gulf_of_Guinea_Guiness_(GUIN); Gulf_of_Guinea_Nigeria_margin_(NM); Gulf_of_Guinea_West_Africa_margin_(WAM); Gulf_of_Mexico_Alaminos_Canyon_(AC); Gulf_of_Mexico_Brine_Pool_(BP); Gulf_of_Mexico_Louisiana_Slope_(LS); Gulf of Guinea; Gulf of Mexico; iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; larval dispersal; LATITUDE; Location; LONGITUDE; Mid-Atlantic_Ridge_Logatchev_seeps_(LOG); Mid-Atlantic Ridge; Model; Mussel; N_Mid-Atlantic_Ridge_Atlantis_Fracture_Zone_(LOST); NE_Atlantic_margin_Gulf_of_Cadiz_(GC); NE_Atlantic_margin_SWIM_fault_(SWIM); NE Atlantic margin; North_Brazil_margin_Amazon_fan_(AM); North Atlantic; North Brazil margin; North Mid-Atlantic Ridge; Ocean and sea region; Particles; South_Brazil_margin_Sao_Paulo_1_(SP); South_Brazil_margin_Sao_Paulo_2_(SPD); South Brazil margin; Speed, swimming; Temperature, water; US_Atlantic_Margin_Baltimore_Canyon_(BC); US_Atlantic_Margin_Bodie_Island_(BI); US_Atlantic_Margin_New_England_(NE); US_Atlantic_Margin_Norfolk_Canyon_(NC); US Atlantic Margin; West_Africa_Margin_Arguin_bank_(ARG); West_Africa_Margin_Cadamostro_Seamount_(CS); West Africa Margin
    Type: Dataset
    Format: text/tab-separated-values, 5252 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 4157-4174, doi:10.1175/JCLI-D-17-0654.1.
    Description: Decadal variabilities in Indian Ocean subsurface ocean heat content (OHC; 50–300 m) since the 1950s are examined using ocean reanalyses. This study elaborates on how Pacific variability modulates the Indian Ocean on decadal time scales through both oceanic and atmospheric pathways. High correlations between OHC and thermocline depth variations across the entire Indian Ocean Basin suggest that OHC variability is primarily driven by thermocline fluctuations. The spatial pattern of the leading mode of decadal Indian Ocean OHC variability closely matches the regression pattern of OHC on the interdecadal Pacific oscillation (IPO), emphasizing the role of the Pacific Ocean in determining Indian Ocean OHC decadal variability. Further analyses identify different mechanisms by which the Pacific influences the eastern and western Indian Ocean. IPO-related anomalies from the Pacific propagate mainly through oceanic pathways in the Maritime Continent to impact the eastern Indian Ocean. By contrast, in the western Indian Ocean, the IPO induces wind-driven Ekman pumping in the central Indian Ocean via the atmospheric bridge, which in turn modifies conditions in the southwestern Indian Ocean via westward-propagating Rossby waves. To confirm this, a linear Rossby wave model is forced with wind stresses and eastern boundary conditions based on reanalyses. This linear model skillfully reproduces observed sea surface height anomalies and highlights both the oceanic connection in the eastern Indian Ocean and the role of wind-driven Ekman pumping in the west. These findings are also reproduced by OGCM hindcast experiments forced by interannual atmospheric boundary conditions applied only over the Pacific and Indian Oceans, respectively.
    Description: This research was supported by a scholarship from the China Scholarship Council (CSC) to X. J., a research fellowship by the Alexander von Humboldt Foundation to C. C. U., an NSF OCE PO Grant (OCE- 1242989) to Y.-O. K., the ONR Young Investigator Award (N00014-15-1-2588) to H. S., and a research grant from the Ministry of Science and Technology of the People’s Republic of China to Tsinghua University (2017YFA0603902).
    Description: 2018-10-30
    Keywords: Atmosphere-ocean interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...