GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_Coast; BIOACID; Biological Impacts of Ocean Acidification; Coastal Ecology @ AWI; German Bight, North Sea; Helgoland; Meeresstation Helgoland; MULT; Multiple investigations; off_Helgoland  (1)
  • Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Arthropoda; Behaviour; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbon/Phosphorus ratio; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chromista; Coast and continental shelf; Experiment; Figure; Food consumption; Fucus vesiculosus; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Idotea balthica; Idotea emarginata; Incubation duration; Laboratory experiment; Mass; Nitrogen/Phosphorus ratio; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phytoplankton; Potentiometric; Potentiometric titration; Replicate; Respiration; Respiration rate, oxygen; Salinity; Salinity, standard deviation; Species; Species interaction; Temperate; Temperature; Temperature, water; Treatment  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2023-11-23
    Description: Our objective for this study was to evaluate the influence of preindustrial and expected future atmospheric CO2 concentrations (280 µatm and 700 µatm pCO2, respectively) on different life-cycle stages of the kelp Laminaria hyperborea from Helgoland (Germany, North Sea). Zoospore germination, gametogenesis, vegetative growth, sorus formation and photosynthetic performance of vegetative and fertile tissue were examined. The contribution of external carbonic anhydrase (exCA) to C-supply for net-photosynthesis (net-PS) and the Chla- and phlorotannin content were investigated. Female gametogenesis and vegetative growth of sporophytes were significantly enhanced under the expected future pCO2. rETR(max) and net-PS of young vegetative sporophytes tended to increase performance at higher pCO2. The trend towards elevated net-PS vanished after inhibition of exCA. In vegetative sporophytes, phlorotannin content and Chla content were not significantly affected by pCO2.
    Keywords: AWI_Coast; BIOACID; Biological Impacts of Ocean Acidification; Coastal Ecology @ AWI; German Bight, North Sea; Helgoland; Meeresstation Helgoland; MULT; Multiple investigations; off_Helgoland
    Type: Dataset
    Format: application/zip, 1.7 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gutow, Lars; Rahman, Mohammed Mofizur; Bartl, Kevin; Saborowski, Reinhard; Bartsch, Inka; Wiencke, Christian (2014): Ocean acidification affects growth but not nutritional quality of the seaweed Fucus vesiculosus (Phaeophyceae, Fucales). Journal of Experimental Marine Biology and Ecology, 453, 84-90, https://doi.org/10.1016/j.jembe.2014.01.005
    Publication Date: 2024-03-15
    Description: Understanding the ecological implications of global climate change requires investigations of not only the direct effects of environmental change on species performance but also indirect effects that arise from altered species interactions. We performed CO2 perturbation experiments to investigate the effects of ocean acidification on the trophic interaction between the brown seaweed Fucus vesiculosus and the herbivorous isopod Idotea baltica. We predicted faster growth of F. vesiculosus at elevated CO2-concentrations and higher carbon content of the algal tissue. We expected that I. baltica has different consumption rates on algae that have been grown at different CO2 levels and that the isopods remove surplus carbon metabolically by enhanced respiration. Surprisingly, growth of F. vesiculosus as well as the C:N-ratio of the algal tissue were reduced at high CO2-levels. The changes in the elemental composition had no effect on the consumption rates and the respiration of the herbivores. An additional experiment showed that consumption of F. vesiculosus by the isopod Idotea emarginata was independent of ocean acidification and temperature. Our results could not reveal any effects of ocean acidification on the per capita strength of the trophic interaction between F. vesiculosus and its consumers. However, reduced growth of the algae at high CO2-concentrations might reduce the capability of the seaweed to compensate losses due to intense herbivory.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Arthropoda; Behaviour; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbon/Phosphorus ratio; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chromista; Coast and continental shelf; Experiment; Figure; Food consumption; Fucus vesiculosus; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Idotea balthica; Idotea emarginata; Incubation duration; Laboratory experiment; Mass; Nitrogen/Phosphorus ratio; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phytoplankton; Potentiometric; Potentiometric titration; Replicate; Respiration; Respiration rate, oxygen; Salinity; Salinity, standard deviation; Species; Species interaction; Temperate; Temperature; Temperature, water; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 8024 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...