GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Green chemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (299 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030678845
    Serie: Advances in Science, Technology and Innovation Series
    DDC: 660.0286
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- 1 Biomass-Derived Polyurethanes for Sustainable Future -- Abstract -- 1 Introduction -- 1.1 Chemicals for Preparation of Polyurethanes -- 1.2 Importance of Green Chemicals and Synthesis Methods -- 1.3 Characteristics of Biomaterials for Polyurethanes -- 2 Bio-Oils as a Renewable Resource for Polyurethanes -- 2.1 Epoxidation and Ring-Opening Reactions -- 2.2 Hydroformation and Hydrogenation Reactions -- 2.3 Ozonolysis -- 2.4 Thiol-Ene Reaction -- 2.5 Transesterification Reaction -- 3 Terpenes as Green Starting Chemicals for Polyurethanes -- 4 Lignin for Green Polymers -- 5 Conclusion -- References -- 2 Mechanochemistry: A Power Tool for Green Synthesis -- Abstract -- 1 Introduction -- 2 History of Mechanochemistry -- 3 Principles of Mechanochemistry -- 3.1 Mechanisms and Kinetics of Mechanochemistry -- 3.2 Effects of Reaction Parameters -- 4 Mechanochemical Synthesis of Materials -- 4.1 Mechanochemical Synthesis of Co-crystals -- 4.2 Mechanochemistry in Inorganic Synthesis -- 4.3 Mechanochemistry in Organic Synthesis -- 4.4 Mechanochemistry in Metal-Organic Frameworks (MOFs) -- 4.5 Mechanochemistry in Porous Organic Materials (POMs) -- 4.6 Mechanochemical Synthesis of Polymers -- 5 Conclusions -- References -- 3 Future Trends in Green Synthesis -- Abstract -- 1 Introduction -- 2 Green Chemistry Metrics -- 2.1 Atom Economy (AE) -- 2.2 Environmental Factor (E Factor) -- 2.3 Process Mass Intensity (PMI) -- 2.4 Reaction Mass Efficiency (RME) -- 3 Application of Green Concept in Synthesis -- 3.1 Solvent-Based Organic Synthesis -- 3.2 Aqueous Medium -- 3.2.1 Micellar Media -- 3.2.2 Different Non-Aqueous Media -- Ionic Liquids -- Fluorous Media -- Supercritical Fluid -- Solvent-Free Synthesis -- 4 Future Trends -- References -- 4 Plant-Mediated Green Synthesis of Nanoparticles -- Abstract -- 1 Introduction. , 2 Methods for Metallic Nanoparticle Biosynthesis -- 3 Green Biosynthesis of Metallic NPs -- 3.1 Gold Nanoparticles -- 3.2 Platinum Nanoparticles -- 3.3 Silver Nanoparticles -- 3.4 Zinc Oxide Nanoparticles -- 3.5 Titanium Dioxide Nanoparticles -- 4 Different Parts Used for the Synthesis of Metallic Nanoparticles -- 4.1 Fruit -- 4.2 Stem -- 4.3 Seeds -- 4.4 Flowers -- 4.5 Leaves -- 5 Conclusions -- References -- 5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- Abstract -- 1 Introduction -- 2 Advantages of Green Synthesis Methods -- 3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 3.1 Biological Methods -- 3.1.1 Using Microorganism -- Microorganisms as Reactant -- Microorganism as Template -- 3.1.2 Using Plant -- Plant as Reactant -- Plant as Template -- 3.1.3 Using Other Green Templates -- 3.2 Physical and Chemical Methods -- 3.2.1 Green Techniques -- 3.2.2 Green Reagents -- 3.2.3 Green Solvents -- 4 Growth Mechanism of Metal and Metal Oxide HSNs -- 4.1 Biological Method -- 4.1.1 Biomolecules as Reagents -- 4.1.2 Biomolecules as Templates -- 4.2 Physical and Chemical Methods -- 5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 5.1 Biomedical Application -- 5.2 Environmental Remediation -- 5.2.1 Wastewater Treatment -- 5.2.2 Energy Storage -- 5.2.3 Sensing -- 6 Present Challenges and Future Prospect -- Acknowledgements -- References -- 6 Bioprivileged Molecules -- Abstract -- 1 Introduction -- 2 Four Carbon 1,4-Diacids -- 2.1 Succinic Acid -- 2.2 Fumaric Acid -- 2.3 Malic Acid -- 3 Furan 2,5-Dicarboxylic Acid (FDCA) -- 4 3-Hydroxypropionic Acid (3-HPA) -- 5 Glucaric Acid -- 6 Glycerol -- 7 Aspartic Acid -- 8 Itaconic Acid -- 9 3-Hydroxybutyrolactone -- 10 Sorbitol -- 11 Xylitol -- 12 Glutamic Acid -- 13 Levulinic Acid. , 14 Emerging Molecules -- 15 Conclusion -- References -- 7 Membrane Reactors for Green Synthesis -- Abstract -- 1 Introduction -- 2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL -- 2.1 Ionic Liquid Media Effect on Free CLAB -- 2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL -- 2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL -- 3 Mixed Ionic Electronic MR -- 3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane -- 3.2 Steam Flow Effect on Side I of Membrane -- 3.3 Temperature Effect -- 4 Green Synthesis of Methanol in a Membrane Reactor -- 5 Green Fuel Energy -- 5.1 Green H2 Energy -- 5.2 Biofuel Energy -- 5.3 Green Fuel Additive -- 6 Biocatalyst Membrane Reactors -- 7 Photocatalytic Membrane Reactors -- 8 Conclusions -- References -- 8 Application of Membrane in Reaction Engineering for Green Synthesis -- Abstract -- 1 Introduction -- 2 Applications of Membrane Reactors in Reaction Engineering -- 2.1 Syngas Production -- 2.2 Hydrogen Production -- 2.3 CO2 Thermal Decomposition -- 2.4 Higher Hydrocarbon Production -- 2.5 Methane Production -- 2.6 Ammonia Production -- 3 Environmental Impacts -- 4 Conclusions and Future Recommendations -- Acknowledgements -- References -- 9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes -- Abstract -- 1 Introduction -- 2 Principle -- 3 Enzymes Involved in Light-Driven Catalysis -- 3.1 Heme-Containing Enzymes -- 3.1.1 Cytochrome P450 -- 3.1.2 Peroxidases -- 3.2 Flavin-Based Enzyme -- 3.2.1 Baeyer-Villiger Monooxygenases -- 3.2.2 Old Yellow Enzymes -- 3.3 Metal Cluster-Centered Enzyme -- 3.3.1 Hydrogenases -- 3.3.2 Carbon Monoxide Dehydrogenases -- 4 Nanoparticle-Based Activation of Enzyme -- 5 Applications in Photo-Biocatalysis -- 5.1 Isolated Enzymes/Cell Lysates -- 6 Summary and Future Scope -- References. , 10 Biomass-Derived Carbons and Their Energy Applications -- Abstract -- 1 Introduction -- 2 Types of Biomass Materials -- 2.1 Plant-Based Carbons -- 2.2 Fruit-Based Carbons -- 2.3 Animal-Based Carbons -- 2.4 Microorganism-Based Carbons -- 3 Activation of Biomass-Derived Carbons -- 3.1 Activation of Carbons -- 3.1.1 Chemical Activation of Carbons -- 3.1.2 Carbon Activation Through Physical Method -- 3.1.3 Self-activation of Carbons -- 3.2 Pyrolysis Techniques -- 3.2.1 Effect of Temperature -- 3.2.2 Effect of Residence Time -- 3.2.3 Heating Rate Effect -- 3.2.4 Size of the Particle -- 3.3 Microwave-Assisted Technique -- 3.4 Carbonization by Hydrothermal -- 3.5 Ionothermal Carbonization -- 3.6 Template Method -- 4 Energy Storage Applications of Biomass Carbons -- 4.1 Supercapacitors -- 4.2 Li/Na-Ion Batteries -- 5 Conclusion -- Acknowledgements -- References -- 11 Green Synthesis of Nanomaterials via Electrochemical Method -- Abstract -- 1 Introduction -- 2 Green Synthesis -- 2.1 Application of Biology in Green Synthesis -- 2.2 Green Synthesis Based on the Application of Solvent -- 3 Computational Data and Analysis -- 4 Electrochemical Method -- 5 Electrodeposition Method -- 5.1 Experimental Setup for Electrodeposition -- 6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis -- 7 Conclusion -- References -- 12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments -- Abstract -- 1 Introduction -- 2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs]. -- 2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations -- 2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions. , 2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations -- 2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines -- 2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles -- 2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines -- 2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR) -- 2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions -- 2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O -- 2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines -- 2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines -- 2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs -- 3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs] -- 3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway -- 3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway -- 3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy -- 3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations -- 3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions -- 3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides. , 3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Schlagwort(e): Green chemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (738 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128226704
    DDC: 547.2
    Sprache: Englisch
    Anmerkung: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Microwaves in Organic Synthesis -- Copyright -- Contents -- Contributors -- Chapter 1: Microwave catalysis in organic synthesis -- 1. Introduction -- 1.1. History -- 1.2. Early development in utilization of microwave heating for organic synthesis -- 2. Factors influencing microwave heating in organic reactions -- 2.1. Microwave heating mechanism -- 2.1.1. Dipolar polarization mechanism -- 2.1.2. Ionic conduction mechanism -- 2.2. Dielectric properties and loss tangent -- 2.3. Superheating effect -- 2.4. Interaction of microwaves with different materials -- 3. Comparison of microwave with conventional heating -- 4. Microwave-assisted catalytic organic reactions -- 4.1. Coupling reactions -- 4.1.1. Suzuki reaction (or Suzuki-Miyaura coupling) -- 4.1.2. Stille coupling reaction -- 4.1.3. Sonogashira coupling -- 4.1.4. Heck reaction -- 4.2. Microwave-assisted heterocyclic chemistry -- 4.2.1. Nitrogen-containing heterocycles -- 4.2.2. Oxygen-containing heterocycles -- 4.2.3. Sulfur-containing heterocycles -- 4.3. Multicomponent reactions -- 4.3.1. Hantzsch reaction -- 4.3.2. Ugi reaction -- 4.3.3. Biginelli reaction -- 4.3.4. Mannich reaction -- 4.3.5. Strecker reaction -- 4.4. Alkylation reactions -- 4.4.1. N-Alkylation -- 4.4.2. C-Alkylation -- 4.4.3. O-Alkylation -- 4.5. Esterification and transesterification reactions -- 5. Microwave reactors -- 6. Current challenges in microwave-assisted synthesis -- 6.1. Energy efficiency -- 6.2. Scale-up of microwave-assisted organic reactions -- 7. Conclusion -- References -- Chapter 2: Microwave-assisted CN formation reactions -- 1. Introduction -- 2. N-Arylations, N-alkylations, and related reactions -- 2.1. Palladium-catalyzed processes-Buchawald-Hartwig amination. , 2.2. Copper-catalyzed reactions-The Ullmann coupling -- 2.3. Application of other metal catalysts -- 2.4. Metal-free transformations -- 2.5. The Petasis borono-Mannich reaction -- 2.6. Three-component propargylations -- 3. Amidations -- 3.1. Direct amidations -- 3.2. Amidation by reacting esters and amines -- 3.3. Transamidations -- 3.4. Oxidative amidations -- 3.5. Miscellaneous processes -- 4. Ring-forming reactions -- 4.1. Rings with one nitrogen atom -- 4.1.1. Synthesis of three- and four-membered rings -- 4.1.2. Synthesis of five-membered rings -- 4.1.3. Six-membered and larger rings -- 4.1.4. Condensed rings: Indoles and structural isomers -- 4.1.5. Condensed rings: Quinolines and isoquinolines -- 4.1.6. Molecules with multiple rings -- 4.2. Ring systems with two nitrogen atoms -- 4.2.1. Synthesis of diazoles -- 4.2.2. Six-membered rings -- 4.2.3. Condensed rings -- 4.2.4. Molecules with multiple rings -- 4.3. Rings with three and four nitrogen atoms -- 4.3.1. Synthesis of azoles -- Synthesis of 1,2,3-triazoles -- Synthesis of 1,2,4-triazoles -- Synthesis of tetrazoles -- 4.3.2. Synthesis of triazines -- 4.3.3. Condensed bicyclic molecules -- 5. Polycyclic condensed ring systems with multiple nitrogen atoms -- 5.1. Molecules containing three nitrogen atoms -- 5.2. Ring systems with four and more nitrogens -- 6. Summary -- References -- Chapter 3: Microwave-assisted multicomponent reactions -- 1. Introduction -- 2. Three-component reactions -- 2.1. Mannich reaction -- 2.2. Betti reaction -- 2.3. Petasis reaction -- 2.4. Kabachnik-Fields reaction -- 2.5. A3-coupling reaction -- 2.6. Povarov reaction -- 2.7. Strecker reaction -- 2.8. Groebke-Blackburn-Bienaymé reaction -- 2.9. Passerini reaction -- 2.10. Pauson-Khand reaction -- 2.11. Kindler reaction -- 2.12. Gewald reaction -- 2.13. Bucherer-Bergs reaction -- 2.14. Biginelli reaction. , 3. Four-component reactions -- 3.1. Ugi reactions -- 3.2. Radziszewski reaction -- 3.3. Hantzsch dihydropyridine synthesis -- 3.4. Kröhnke reaction -- 4. Concluding remarks -- References -- Chapter 4: Catalytic, ultrasonic, and microwave-assisted synthesis of naphthoquinone derivatives by intermolecular and -- 1. Summary -- 2. Introduction -- 3. Synthesis of 2-anilino-1,4-naphthoquinone derivatives -- 4. Synthesis of 2,3-dianilino)-1,4-naphthoquinone derivatives -- 5. Synthesis of 2-anilino-5-hydroxy-1,4-naphthoquinone derivatives -- 6. Synthesis of indolo naphthoquinone derivatives -- 7. Conclusions -- References -- Chapter 5: Microwave-assisted condensation reactions -- 1. Introduction -- 2. Conceptual principles in microwave mechanism -- 3. Microwave-assisted condensation reactions -- 3.1. Microwave-assisted multicomponent condensation reaction -- 3.1.1. Multicomponent synthesis of aminopyrazolo[1,5-a][1,3,5]triazine-8-carboxylates -- 3.1.2. Multicomponent synthesis of 1,3,5,6-tetrasubstituted 2-pyridone -- 3.1.3. Multicomponent synthesis of functionalized steroidal pyridines -- 3.1.4. Multicomponent synthesis of indolyl-coumarin hybrids -- 3.1.5. Multicomponent synthesis of indole-1,3-dione derivatives -- 3.2. Microwave-assisted Knoevenagel condensation reaction -- 3.2.1. Knoevenagel synthetic approach to ethyl 2-cyano-3-phenylacrylate derivatives -- 3.2.2. Knoevenagel synthetic approach to Indole-based Heterocycles -- 3.2.3. Knoevenagel synthetic approach to tetrahydrochromeno[3,4-c]chromen-1(2H)-ones -- 3.2.4. Knoevenagel synthetic approach to pyran-based chalcones -- 3.2.5. Knoevenagel synthetic approach to 3-acetylcoumarin and chalcone affiliates -- 3.2.6. Knoevenagel synthetic approach to 2,3-dihydropyran[2,3-c]pyrazoles -- 3.3. Microwave-assisted aldol condensation reaction -- 3.3.1. Aldol-type synthetic approach to 3-acetyl isocoumarin. , 3.3.2. Aldol-type synthetic approach to aza-fused isoquinoline motifs -- 3.3.3. Aldol-type synthetic approach to dibenzylidenecyclohexanones -- 3.3.4. Aldol-type synthetic approach to dibenzylidenecyclopentanone -- 3.3.5. Aldol-type synthetic approach to 2-benzylideneoctanal -- 3.4. Microwave-assisted Pechmann condensation reaction -- 3.4.1. Amberlyst-15 catalyzed synthetic approach to 4-methylcoumarin -- 3.4.2. Zn [(l)-proline]2 catalyzed synthetic approach to tricyclic 4-methylcoumarin -- 3.4.3. FeF3 catalyzed synthetic approach to 4,7-dimethyl-2H-chromen-2-one -- 3.4.4. Pechmann condensation reaction for synthesis of umbelliferone -- 3.4.5. Microwave-assisted synthesis via two different naphthalenediol -- 3.4.6. ZnCl2 catalyzed synthesis of linear pyranodihydrocoumarin -- 3.5. Microwave-assisted Mannich condensation reaction -- 3.5.1. Mannich synthetic approach to nitrothiazolo[3,2-c]pyrimidines -- 3.5.2. Mannich synthetic approach to 4-hydroxyacetophenone derivatives -- 3.5.3. Mannich synthetic approach to barbituric acid derivatives -- 3.5.4. Mannich synthetic approach to polymethoxychalcone -- 3.6. Other miscellaneous microwave-assisted condensation products -- 4. Conclusion -- References -- Chapter 6: Microwave-assisted oxidation reactions -- 1. Introduction -- 2. C-oxidation -- 2.1. Oxidation of hydrocarbons -- 2.1.1. Oxidation of sp3 hybridized carbons -- Alkane to aldehyde (RCH3RCOH) -- Alkane to glyoxal (RCOCH3RCOCOH) -- Alkane to acid (RCH3RCOOH) -- Alkane to ketone (RCH2RRCOR) -- Cyclic ethers to esters (RCH2ORRCOOR) -- 2.1.2. Oxidation of sp2 hybridized carbons -- Alkene to aldehyde (RCHCHRRCOH) -- 2.1.3. Oxidation of sp hybridized carbons -- Alkyne to glyoxal (RCCHRCOCOH) -- 2.2. Oxidation of alcohols -- 2.2.1. Alcohol to aldehyde (RCH2OHRCOH) -- 2.2.2. Clayfen -- 2.2.3. Cetyltrimethylammonium bromochromate (CTMABC) -- 2.2.4. Magtrieve. , 2.2.5. Zeolite A -- 2.3. Oxidation of aldehyde -- 2.3.1. Aldehyde to acid (RCHORCOOH) -- 2.3.2. Aldehyde to ester (RCHORCOOR1 -- R1 from solvent) -- 2.4. Oxidation of halides -- 2.4.1. Halides to aldehydes (RCH2XRCOH) -- 2.5. Oxidative cyclization -- 2.6. Oxidative aromatization -- 2.7. Oxidative amination -- 2.8. Advancements in named oxidation reactions -- 2.8.1. Baeyer-Villiger oxidation -- 2.8.2. Dess-Martin periodinane reaction -- 2.8.3. Fetizon/Fetison oxidation -- 2.8.4. Jacobsen epoxidation -- 2.8.5. Jones/chromium based oxidation -- 2.8.6. Kornblum oxidation -- 2.8.7. Noyori oxidation -- 2.8.8. Sharpless epoxidation -- Other oxidation reactions -- 3. N-oxidations -- 3.1. N-oxide formation -- 3.2. Amines to imines -- 4. S-oxidations -- 4.1. Sulfides to sulfoxides -- 4.2. Thiols to disulfides -- References -- Chapter 7: Microwave-assisted reduction reactions -- 1. Introduction -- 1.1. Fundamental aspects of microwave radiation -- 1.2. Microwave apparatus -- 1.3. Advantages and disadvantages of microwave irradiation -- 2. Microwave-assisted organic reduction reactions -- 3. Microwave-assisted reduction for the development of inorganic raw materials -- 4. Microwave-assisted reduction for production composites -- 5. Microwave-assisted reduction for nanoparticle synthesis -- 6. Microwave-assisted reduction for catalyst purpose -- 7. Conclusion -- References -- Chapter 8: Microwave-assisted stereoselective organic synthesis -- 1. Introduction -- 2. Microwave-assisted diastereoselective and enantioselective reactions -- 3. Microwave-assisted diastereoselective organic transformation reactions -- 4. Microwave-assisted enantioselective organic transformation reactions -- 5. Conclusion -- References -- Chapter 9: Microwave-assisted heterocyclics -- 1. Introduction -- 2. Microwave-promoted synthesis of heterocyclic compounds. , 2.1. Synthesis of tetrazole-based heterocycles.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Adhesives-Environmental aspects. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (300 pages)
    Ausgabe: 1st ed.
    ISBN: 9781119655084
    Sprache: Englisch
    Anmerkung: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Anti-Adhesive Coatings: A Technique for Prevention of Bacterial Surface Fouling -- 1.1 Bacterial Surface Fouling (Biofouling) -- 1.2 Negative Effects of Biofouling by Bacteria on Practical Applications -- 1.3 Anti-Adhesive Coatings for Preventing Bacterial Surface Fouling -- 1.3.1 Hydrophilic Polymers -- 1.3.2 Zwitterionic Polymers -- 1.3.3 Super-Hydrophobic Polymers -- 1.3.4 Slippery Liquid Infused Porous Surfaces (SLIPS) -- 1.3.5 Protein and Glycoprotein-Based Coatings -- 1.4 Bifunctional Coatings With Anti-Adhesive and Antibacterial Properties -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 Lignin-Based Adhesives -- 2.1 Introduction -- 2.2 Native Lignin and Source of Technical Lignin -- 2.2.1 Native Lignin -- 2.2.2 Technical Lignins -- 2.3 Limitations of Technical Lignins -- 2.3.1 Heterogeneity of Technical Lignins -- 2.3.2 Reactivity of Technical Lignins -- 2.4 Lignin Pre-Treatment/Modification for Adhesive Application -- 2.4.1 Physical Pre-Treatment -- 2.4.2 Chemical Modification -- 2.5 Challenges and Prospects -- 2.6 Conclusions -- References -- Chapter 3 Green Adhesive for Industrial Applications -- 3.1 Introduction -- 3.2 Advanced Green Adhesives Categories- Industrial Applications -- 3.2.1 Keta Spire Poly Etherether Ketone Powder Coating -- 3.2.2 Bio-Inspired Adhesive in Robotics Field Application -- 3.2.3 Bio-Inspired Synthetic Adhesive in Space Application -- 3.2.3.1 Micro Structured Dry Adhesive Fabrication for Space Application -- 3.2.4 Natural Polymer Adhesive for Wood Panel Industry -- 3.2.5 Tannin Based Bio-Adhesive for Leather Tanning Industry -- 3.2.6 Conductive Adhesives in Microelectronics Industry -- 3.2.7 Bio-Resin Adhesive in Dental Industry -- 3.2.8 Green Adhesive in Fiberboard Industry -- 3.3 Conclusions and Future Scope. , References -- Chapter 4 Green Adhesives for Biomedical Applications -- 4.1 Introduction -- 4.2 Main Raw Materials of Green Adhesives: Structure, Composition, and Properties -- 4.2.1 Chitosan -- 4.2.2 Alginate -- 4.2.3 Lignin -- 4.2.4 Lactic Acid PLA -- 4.3 Properties Characterization of Green Adhesives for Biomedical Applications -- 4.3.1 Diffraction X-Rays (DRX) -- 4.3.2 Atomic Force Microscopy (AFM) -- 4.3.3 Scanning Electron Microscope (SEM Images) -- 4.3.4 Wettability or Contact Angle (CA) -- 4.3.5 Fourier Transform Infrared Spectroscopy (FTIR) -- 4.3.6 Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) -- 4.3.7 Thermal Analysis (TG/DTG/DTA and DSC Curves) -- 4.3.8 Surface Area and Porosimetry Analyzer (ASAP) -- 4.3.9 Mechanical Properties of Green Adhesives -- 4.4 Biomedical Applications of Natural Polymers -- 4.4.1 Alginate -- 4.4.1.1 Biomedical Applications of Alginate -- 4.4.2 Chitosan -- 4.4.2.1 Biomedical Applications of Chitosan -- 4.4.3 Lignin -- 4.4.3.1 Biomedical Applications of Lignin -- 4.4.4 Polylactide (PLA) -- 4.4.4.1 Biomedical Applications of PLA -- 4.5 Final Considerations -- Acknowledgements -- References -- Chapter 5 Waterborne Adhesives -- 5.1 Introduction -- 5.1.1 Motivation for the Use of Waterborne Adhesives -- 5.1.1.1 Sustainability and Environment Regulations -- 5.1.1.2 Circular Economy -- 5.1.1.3 Avoid Harmful Emissions -- 5.1.1.4 Development of Novel and Sustainable End Products -- 5.1.2 Environmental Effects and Mankind Toxicity Analysis -- 5.2 Performance of Waterborne Adhesives: An Overview -- 5.2.1 Waterborne Polyurethane (WBPU) Adhesives -- 5.2.1.1 Chemical Structure of Waterborne PU -- 5.2.1.2 Performances of WBPU Adhesives -- 5.2.2 Waterborne Epoxy Adhesive -- 5.3 Conclusions -- References -- Chapter 6 Using Polyfurfuryl Alcohol as Thermoset Adhesive/Sealant -- 6.1 Introduction. , 6.2 Furfuryl Alcohol as Adhesives -- 6.3 Polyfurfuryl Alcohol as Sealants -- 6.3.1 Effect of Different Parameters on the Curing of PFA-Based Sealants -- 6.4 Applications -- 6.5 Conclusions -- Acknowledgement -- References -- Chapter 7 Bioadhesives -- 7.1 Introduction -- 7.2 History of Bioadhesives -- 7.3 Classification of Bioadhesives -- 7.4 Mechanism of Bioadhesion -- 7.4.1 Mechanical Interlocking -- 7.4.2 Chain Entanglement -- 7.4.3 Intermolecular Bonding -- 7.4.4 Electrostatic Bonding -- 7.5 Testing of Bioadhesives -- 7.5.1 In Vitro Methods -- 7.5.1.1 Shear Stress Measurements -- 7.5.1.2 Peel Strength Evaluation -- 7.5.1.3 Flow Through Experiment and Plate Method -- 7.5.2 Ex Vitro Methods -- 7.5.2.1 Adhesion Weight Method -- 7.5.2.2 Fluorescent Probe Methods -- 7.5.2.3 Falling Liquid Film Method -- 7.6 Application of Bioadhesives -- 7.6.1 Bioadhesives as Drug Delivery Systems -- 7.6.2 Bioadhesives as Fibrin Sealants -- 7.6.3 Bioadhesives as Protein-Based Adhesives -- 7.6.4 Bioadhesives in Tissue Engineering -- 7.7 Conclusion -- References -- Chapter 8 Polysaccharide-Based Adhesives -- 8.1 Introduction -- 8.2 Cellulose-Derived Adhesive -- 8.2.1 Esterification -- 8.2.1.1 Cellulose Nitrate -- 8.2.1.2 Cellulose Acetate -- 8.2.1.3 Cellulose Acetate Butyrate -- 8.2.2 Etherification -- 8.2.2.1 Methyl Cellulose -- 8.2.2.2 Ethyl Cellulose -- 8.2.2.3 Carboxymethyl Cellulose -- 8.3 Starch-Derived Adhesives -- 8.3.1 Alkali Treatment -- 8.3.2 Acid Treatment -- 8.3.3 Heating -- 8.3.4 Oxidation -- 8.4 Natural Gums Derived-Adhesives -- 8.5 Fermentation-Based Adhesives -- 8.6 Enzyme Cross-Linked-Based Adhesives -- 8.7 Micro-Biopolysaccharide-Based Adhesives -- 8.8 Mechanism of Adhesion -- 8.9 Tests for Adhesion Strength -- 8.10 Applications -- 8.10.1 Biomedical Applications -- 8.10.2 Food Stuffs Applications -- 8.10.3 Pharmaceutical Applications. , 8.10.4 Agricultural Applications -- 8.10.5 Cigarette Manufacturing -- 8.10.6 Skin Cleansing Applications -- 8.11 Conclusion -- References -- Chapter 9 Wound Healing Adhesives -- 9.1 Introduction -- 9.2 Wound -- 9.2.1 Types of Wounds -- 9.2.1.1 Acute Wounds -- 9.2.1.2 Chronic Wounds -- 9.3 Structure and Function of the Skin -- 9.4 Mechanism of Wound Healing -- 9.5 Wound Closing Techniques -- 9.6 Wound Healing Adhesives -- 9.7 Types of Wound Healing Adhesives Based Upon Site of Application -- 9.7.1 External Use Wound Adhesives -- 9.7.1.1 Steps for Applying External Wound Healing Adhesives on Skin [30] -- 9.7.2 Internal Use Wound Adhesives -- 9.8 Types of Wound Healing Adhesives Based Upon Chemistry -- 9.8.1 Natural Wound Healing Adhesives -- 9.8.1.1 Fibrin Sealants/Fibrin-Based Tissue Adhesives -- 9.8.1.2 Albumin-Based Adhesives -- 9.8.1.3 Collagen and Gelatin-Based Wound Healing Adhesives -- 9.8.1.4 Starch -- 9.8.1.5 Chitosan -- 9.8.1.6 Dextran -- 9.8.2 Synthetic Wound Healing Adhesives -- 9.8.2.1 Cyanoacrylate -- 9.8.2.2 Poly Ethylene Glycol-Based Wound Adhesives (PEG) -- 9.8.2.3 Hydrogels -- 9.8.2.4 Polyurethane -- 9.9 Summary -- References -- Chapter 10 Green-Wood Flooring Adhesives -- 10.1 Introduction -- 10.2 Wood Flooring -- 10.2.1 Softwood Flooring -- 10.2.2 Hardwood Flooring -- 10.2.3 Engineered Wood Flooring -- 10.2.4 Laminate Flooring -- 10.2.5 Vinyl Flooring -- 10.2.6 Agricultural Residue Wood Flooring Panels -- 10.3 Recent Advances About Green Wood-Flooring Adhesives -- 10.3.1 Xylan -- 10.3.2 Modified Cassava Starch Bioadhesives -- 10.3.3 High-Efficiency Bioadhesive -- 10.3.4 Bioadhesive Made From Soy Protein and Polysaccharide -- 10.3.5 Green Cross-Linked Soy Protein Wood Flooring Adhesive -- 10.3.6 "Green" Bio-Thermoset Resins Derived From Soy Protein Isolate and Condensed Tannins. , 10.3.7 Development of Green Adhesives Using Tannins and Lignin for Fiberboard Manufacturing -- 10.3.8 Cottonseed Protein as Wood Adhesives -- 10.3.9 Chitosan as an Adhesive -- 10.3.10 PE-cg-MAH Green Wood Flooring Adhesive -- References -- Chapter 11 Synthetic Binders for Polymer Division -- List of Abbreviations -- 11.1 Introduction -- 11.2 Classification of Adhesives Based on Its Chemical Properties -- 11.2.1 Thermoset Adhesives -- 11.2.2 Thermoplastic Adhesives -- 11.2.3 Adhesive Blends -- 11.3 Adhesives Characteristics -- 11.4 Adhesives Classification Based on Its Function -- 11.4.1 Permanent Adhesives -- 11.4.2 Removable Adhesives -- 11.4.3 Repositionable Adhesives -- 11.4.4 Blended Adhesives -- 11.4.5 Anaerobic Adhesives -- 11.4.6 Aromatic Polymer Adhesives -- 11.4.7 Asphalt -- 11.4.8 Adhesives Based on Butyl Rubber -- 11.4.9 Cellulose Ester Adhesives -- 11.4.10 Adhesives Based on Cellulose Ether -- 11.4.11 Conductive Adhesives -- 11.4.12 Electrically Conductive Adhesive Materials -- 11.4.13 Thermally Conductive Adhesives -- 11.5 Resin -- 11.5.1 Unsaturated Polyester Resin -- 11.5.2 Monomers -- 11.5.2.1 Unsaturated Polyester -- 11.5.2.2 Alcohol Constituents -- 11.5.2.3 Constituents Like Anhydride and Acid -- 11.5.3 Vinyl Monomers of Unsaturated Polyester Resins -- 11.5.4 Styrenes -- 11.5.5 Acrylates and Methacrylates -- 11.5.6 Vinyl Ethers -- 11.5.7 Fillers -- 11.6 Polyurethanes -- 11.6.1 Monomers -- 11.6.1.1 Diisocyanates -- 11.6.1.2 Phosgene Route -- 11.6.1.3 Phosgene-Free Route -- 11.6.1.4 Polyols -- 11.6.1.5 Vinyl Functionalized Polyols -- 11.6.1.6 Polyols Based on Modified Polyurea -- 11.6.1.7 Polyols Based on Polyester -- 11.6.1.8 Acid and Alcohols-Based Polyesters -- 11.6.2 Rectorite Nanocomposites -- 11.6.3 Zeolite -- 11.7 Epoxy Resins -- 11.7.1 Monomers -- 11.7.1.1 Epoxides -- 11.7.1.2 Hyper Branched Polymers. , 11.7.2 Epoxide Resins Based on Liquid Crystalline Structure.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...