GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI  (2)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ramisch, Arne; Lockot, Gregori; Haberzettl, Torsten; Hartmann, Kai; Kuhn, Gerhard; Lehmkuhl, Frank; Schimpf, Stefan; Schulte, Philipp; Stauch, Georg; Wang, Rong; Wünnemann, Bernd; Yan, Dada; Zhang, Yongzhan; Diekmann, Bernhard (2016): A persistent northern boundary of Indian Summer Monsoon precipitation over Central Asia during the Holocene. Scientific Reports, 6, 25791, https://doi.org/10.1038/srep25791
    Publication Date: 2023-03-13
    Description: Extra-tropical circulation systems impede poleward moisture advection by the Indian Summer Monsoon. In this context, the Himalayan range is believed to insulate the south Asian circulation from extra-tropical influences and to delineate the northern extent of the Indian Summer Monsoon in central Asia. Paleoclimatic evidence, however, suggests increased moisture availability in the Early Holocene north of the Himalayan range which is attributed to an intensification of the Indian Summer Monsoon. Nevertheless, mechanisms leading to a surpassing of the Himalayan range and the northern maximum extent of summer monsoonal influence remain unknown. Here we show that the Kunlun barrier on the northern Tibetan Plateau [~36°N] delimits Indian Summer Monsoon precipitation during the Holocene. The presence of the barrier relocates the insulation effect 1,000 km further north, allowing a continental low intensity branch of the Indian Summer Monsoon which is persistent throughout the Holocene. Precipitation intensities at its northern extent seem to be driven by differentiated solar heating of the Northern Hemisphere indicating dependency on energy-gradients rather than absolute radiation intensities. The identified spatial constraints of monsoonal precipitation will facilitate the prediction of future monsoonal precipitation patterns in Central Asia under varying climatic conditions.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI
    Type: Dataset
    Format: application/zip, 17 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hoff, Ulrike; Biskaborn, Boris K; Dirksen, Veronika G; Dirksen, Oleg V; Kuhn, Gerhard; Meyer, Hanno; Nazarova, Larisa B; Roth, Alexandra; Diekmann, Bernhard (2015): Holocene environment of Central Kamchatka, Russia: Implications from a multi-proxy record of Two-Yurts Lake. Global and Planetary Change, 134, 101-117, https://doi.org/10.1016/j.gloplacha.2015.07.011
    Publication Date: 2023-03-07
    Description: Within the scope of Russian-German palaeoenvironmental research, Two-Yurts Lake (TYL, Dvuh-Yurtochnoe in Russian) was chosen as the main scientific target area to decipher Holocene climate variability on Kamchatka. The 5x2 km large and 26 m deep lake is of proglacial origin and situated on the eastern flank of Sredinny Ridge at the northwestern end of the Central Kamchatka Valley, outside the direct influence of active volcanism. Here, we present results of a multi-proxy study on sediment cores, spanning about the last 7000 years. The general tenor of the TYL record is an increase in continentality and winter snow cover in conjunction with a decrease in temperature, humidity, and biological productivity after 5000-4500 cal yrs BP, inferred from pollen and diatom data and the isotopic composition of organic carbon. The TYL proxy data also show that the late Holocene was punctuated by two colder spells, roughly between 4500 and 3500 cal yrs BP and between 1000 and 200 cal yrs BP, as local expressions of the Neoglacial and Little Ice Age, respectively. These environmental changes can be regarded as direct and indirect responses to climate change, as also demonstrated by other records in the regional terrestrial and marine realm. Long-term climate deterioration was driven by decreasing insolation, while the short-term climate excursions are best explained by local climatic processes. The latter affect the configuration of atmospheric pressure systems that control the sources as well as the temperature and moisture of air masses reaching Kamchatka.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI
    Type: Dataset
    Format: application/zip, 12 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...