GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • AIRICA analyzer (Miranda); Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Baltic Sea; Benthic animals; Benthos; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated, see reference(s); Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Carbon dioxide, partial pressure, standard deviation; Cell density; Cell density, standard deviation; Coast and continental shelf; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Measured; Mollusca; Mytilus edulis; Mytilus edulis, dissolution, nacre; Mytilus edulis, dissolution, nacre, standard deviation; Mytilus edulis, shell length; Mytilus edulis, shell length, standard deviation; Mytilus edulis, shell mass growth; Mytilus edulis, shell mass growth, standard deviation; Mytilus edulis, somatic mass growth; Mytilus edulis, somatic mass growth, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Precision scale (Sartorius TE64, Sartorius AG, Germany); Salinity; Salinity, standard deviation; Single species; Temperate; Temperature, standard deviation; Temperature, water; WTW 340i pH-analyzer and WTW SenTix 81-electrode  (1)
  • Acid-base regulation; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Baltic Sea; Benthic animals; Benthos; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calcium carbonate, dry weight; Calcium carbonate, dry weight, standard deviation; Calcium carbonate, mass; Calcium carbonate, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate; Carbon, organic, particulate, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Charophyta; Coast and continental shelf; Coverage; Coverage, standard deviation; Date; Experiment; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Haemolymph, pH; Haemolymph, pH, standard deviation; Identification; Laboratory experiment; Length; Length, standard deviation; Location; Mass; Mass, standard deviation; Mollusca; Mytilus edulis; Nitrogen, organic, particulate; Nitrogen, organic, particulate, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Salinity; Salinity, standard deviation; Shell length; Single species; Species; Station label; Survival; Survival rate, standard deviation; Temperate; Temperature, standard deviation; Temperature, water; Treatment  (1)
Publikationsart
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Melzner, Frank; Stange, Paul; Trübenbach, Katja; Thomsen, Jörn; Casties, Isabel; Panknin, Ulrike; Gorb, Stanislav N; Gutowska, Magdalena A (2011): Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE, 6(9), e24223, https://doi.org/10.1371/journal.pone.0024223
    Publikationsdatum: 2024-03-15
    Beschreibung: Progressive ocean acidification due to anthropogenic CO2 emissions will alter marine ecosytem processes. Calcifying organisms might be particularly vulnerable to these alterations in the speciation of the marine carbonate system. While previous research efforts have mainly focused on external dissolution of shells in seawater under saturated with respect to calcium carbonate, the internal shell interface might be more vulnerable to acidification. In the case of the blue mussel Mytilus edulis, high body fluid pCO2 causes low pH and low carbonate concentrations in the extrapallial fluid, which is in direct contact with the inner shell surface. In order to test whether elevated seawater pCO2 impacts calcification and inner shell surface integrity we exposed Baltic M. edulis to four different seawater pCO2 (39, 142, 240, 405 Pa) and two food algae (310-350 cells mL-1 vs. 1600-2000 cells mL-1) concentrations for a period of seven weeks during winter (5°C). We found that low food algae concentrations and high pCO2 values each significantly decreased shell length growth. Internal shell surface corrosion of nacreous ( = aragonite) layers was documented via stereomicroscopy and SEM at the two highest pCO2 treatments in the high food group, while it was found in all treatments in the low food group. Both factors, food and pCO2, significantly influenced the magnitude of inner shell surface dissolution. Our findings illustrate for the first time that integrity of inner shell surfaces is tightly coupled to the animals' energy budget under conditions of CO2 stress. It is likely that under food limited conditions, energy is allocated to more vital processes (e.g. somatic mass maintenance) instead of shell conservation. It is evident from our results that mussels exert significant biological control over the structural integrity of their inner shell surfaces.
    Schlagwort(e): AIRICA analyzer (Miranda); Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Baltic Sea; Benthic animals; Benthos; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated, see reference(s); Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Carbon dioxide, partial pressure, standard deviation; Cell density; Cell density, standard deviation; Coast and continental shelf; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Measured; Mollusca; Mytilus edulis; Mytilus edulis, dissolution, nacre; Mytilus edulis, dissolution, nacre, standard deviation; Mytilus edulis, shell length; Mytilus edulis, shell length, standard deviation; Mytilus edulis, shell mass growth; Mytilus edulis, shell mass growth, standard deviation; Mytilus edulis, somatic mass growth; Mytilus edulis, somatic mass growth, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Precision scale (Sartorius TE64, Sartorius AG, Germany); Salinity; Salinity, standard deviation; Single species; Temperate; Temperature, standard deviation; Temperature, water; WTW 340i pH-analyzer and WTW SenTix 81-electrode
    Materialart: Dataset
    Format: text/tab-separated-values, 340 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Thomsen, Jörn; Casties, Isabel; Pansch, Christian; Körtzinger, Arne; Melzner, Frank (2013): Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Global Change Biology, 19(4), 1017-1027, https://doi.org/10.1111/gcb.12109
    Publikationsdatum: 2024-03-15
    Beschreibung: Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg-1) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic community. In a coupled field and laboratory study we examined the annual pCO2 variability in this habitat and the combined effects of elevated pCO2 and food availability on juvenile M. edulis growth and calcification. In the laboratory experiment, mussel growth and calcification were found to chiefly depend on food supply, with only minor impacts of pCO2 up to 3350 µatm. Kiel Fjord was characterized by strong seasonal pCO2 variability. During summer, maximal pCO2 values of 2500 µatm were observed at the surface and 〉3000 µatm at the bottom. However, the field growth experiment revealed seven times higher growth and calcification rates of M. edulis at a high pCO2 inner fjord field station (mean pCO2 ca. 1000 µatm) in comparison to a low pCO2 outer fjord station (ca. 600 µatm). In addition, mussels were able to outcompete the barnacle Amphibalanus improvisus at the high pCO2 site. High mussel productivity at the inner fjord site was enabled by higher particulate organic carbon concentrations. Kiel Fjord is highly impacted by eutrophication, which causes bottom water hypoxia and consequently high seawater pCO2. At the same time, elevated nutrient concentrations increase the energy availability for filter feeding organisms such as mussels. Thus M. edulis can dominate over a seemingly more acidification resistant species such as A. improvisus. We conclude that benthic stages of M. edulis tolerate high ambient pCO2 when food supply is abundant and that important habitat characteristics such as species interactions and energy availability need to be considered to predict species vulnerability to ocean acidification.
    Schlagwort(e): Acid-base regulation; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Baltic Sea; Benthic animals; Benthos; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calcium carbonate, dry weight; Calcium carbonate, dry weight, standard deviation; Calcium carbonate, mass; Calcium carbonate, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate; Carbon, organic, particulate, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Charophyta; Coast and continental shelf; Coverage; Coverage, standard deviation; Date; Experiment; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Haemolymph, pH; Haemolymph, pH, standard deviation; Identification; Laboratory experiment; Length; Length, standard deviation; Location; Mass; Mass, standard deviation; Mollusca; Mytilus edulis; Nitrogen, organic, particulate; Nitrogen, organic, particulate, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Salinity; Salinity, standard deviation; Shell length; Single species; Species; Station label; Survival; Survival rate, standard deviation; Temperate; Temperature, standard deviation; Temperature, water; Treatment
    Materialart: Dataset
    Format: text/tab-separated-values, 7211 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...