GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 551.6  (2)
  • climate services  (1)
  • 1
    Publication Date: 2021-07-03
    Description: Regional climate predictions for the next decade are gaining importance, as this period falls within the planning horizon of politics, economy, and society. The potential predictability of climate indices or extremes at the regional scale is of particular interest. The German MiKlip project (“mid‐term climate forecast”) developed the first regional decadal prediction system for Europe at 0.44° resolution, based on the regional model COSMO‐CLM using global MPI‐ESM simulations as boundary conditions. We analyse the skill of this regional system focussing on extremes and user‐oriented variables. The considered quantities are related to temperature extremes, heavy precipitation, wind impacts, and the agronomy sector. Variables related to temperature (e.g., frost days, heat wave days) show high predictive skill (anomaly correlation up to 0.9) with very little dependence on lead‐time, and the skill patterns are spatially robust. The skill patterns for precipitation‐related variables (e.g., heavy precipitation days) and wind‐based indices (like storm days) are less skilful and more heterogeneous, particularly for the latter. Quantities related to the agronomy sector (e.g., growing degree days) show high predictive skill, comparable to temperature. Overall, we provide evidence that decadal predictive skill can be generally found at the regional scale also for extremes and user‐oriented variables, demonstrating how the utility of decadal predictions can be substantially enhanced. This is a very promising first step towards impact‐related modelling at the regional scale and the development of individual user‐oriented products for stakeholders.
    Description: The skill of the regional MiKlip decadal prediction system is analysed focussing on extremes and user‐oriented variables. Variables related to temperature extremes and the agronomy sector show high predictive skill with very little dependence on lead‐time. Skill patterns for precipitation‐related variables and wind‐based indices are less skilful and more heterogeneous, especially for the latter.
    Description: The study was mainly funded by the Bundesministerium für Bildung und Forschung (BMBF) under project FONA MiKlip‐II http://dx.doi.org/10.13039/501100002347
    Description: AXA Research Fund http://dx.doi.org/10.13039/501100001961
    Keywords: 551.6 ; climate services ; Europe ; extremes ; MiKlip ; regional decadal predictions ; user needs
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-12
    Description: The seasonal cycle of rainfall over the Greater Horn of Africa (GHA) is dominated by the latitudinal migration and activity of the tropical rain belt (TRB). The TRB exhibits high interannual variability in the GHA and the reasons for the recent dry period in the Long Rains (March–May) are poorly understood. In addition, few studies have addressed the rainfall fluctuations during the Msimu Rains (Dec.–Mar.) in the southern GHA region. Interannual variations of the seasonal cycle of the TRB between 1981 and 2018 were analysed using two statistical indices. The Rainfall Cluster Index (RCI) describes the seasonal cycle as a succession of six characteristic rainfall patterns, while the Seasonal Location Index (SLI) captures the latitudinal location of the TRB. The SLI and RCI depict the full seasonal cycle of the TRB supporting interpretations of the interannual variations and trends. The Msimu Rains are dominated by two clusters with opposite rainfall characteristics between the Congo Basin and Tanzania. The associated anomalies in moisture flux and divergence indicate variations in the location of the TRB originating from an interplay between low-level air flows from the Atlantic and Indian Oceans and tropical and subtropical teleconnections. The peak period of the Long Rains shows a complex composition of five clusters, which is tightly connected to intraseasonal and interannual variability of latitudinal locations of the TRB. A persistent location of the TRB near the equator, evidenced in a frequent occurrence of a cluster related to an anomalously weak Walker circulation, is associated with wet conditions over East Africa. Dry Long Rains are associated with strong and frequent latitudinal variations of the TRB position with a late onset and intermittent rainfall. These results offer new opportunities to understand recent variability and trends in the GHA region.
    Keywords: 551.6 ; Greater Horn of Africa ; seasonal cycle of rainfall ; ropical rain belt ; interannual variability
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...