GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 130-803D; 130-805B; 130-806B; 130-807A; Age model; Ageprofile Datum Description; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Event label; Joides Resolution; Leg130; North Pacific Ocean; Ocean Drilling Program; ODP; West equatorial Pacific Ocean  (1)
  • 130-806B; Depth, composite; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Globigerinoides sacculifer sac, δ18O; Intercore correlation; Joides Resolution; Leg130; Mass spectrometer Finnigan MAT 251; North Pacific Ocean; Ocean Drilling Program; ODP  (1)
Publikationsart
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Jansen, Eystein; Mayer, Larry A; Backman, Jan; Leckie, R Mark; Takayama, Toshiaki (1993): Evolution of Pliocene climate cyclicity at Hole 806B (5-2 Ma): oxygen isotope record. In: Berger, WH; Kroenke, LW; Mayer, LA; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 130, 349-362, https://doi.org/10.2973/odp.proc.sr.130.028.1993
    Publikationsdatum: 2024-01-09
    Beschreibung: A detailed Pliocene oxygen isotope record from the Ontong Java Plateau, based on measurements of the surface-dwelling planktonic foraminifer Globigerinoides sacculifer, was produced for the period from 5 to 2 Ma. The record documents major long- and short-term climate changes. The results show periods of enhanced ice volume at 4.6 to 4.3 Ma and after 2.85 Ma, a long-term warming trend from 4.1 to 3.7 Ma, and a distinct cooling trend that was initiated at 3.5 Ma and progressed through the initiation of large-scale Northern Hemisphere glaciation after 2.85 Ma (according to the time scale of Shackleton and others proposed in 1990). Periods of high average ice volumes also show the highest d18O amplitudes. The pattern of climate cyclicity changed markedly at about 2.85 Ma. Earlier times were marked by high-frequency variability at the precessional frequencies or even higher frequencies, pointing to low-latitude processes as a main controlling factor driving planktonic d18O variability in this period. The high-frequency variability is not coherent with insolation and points to strong nonlinearity in the way the climate system responded to orbital forcing before the onset of large scale Northern Hemisphere glaciation. After 3 Ma, stronger 41-k.y. cyclicity appears in the record. The shift in pattern is clearest around 2.85 Ma (according to the time scale proposed by Shackleton and others in 1990), 100-200 k.y. before the most dramatic spread of Northern Hemisphere ice sheets. This indicates that high-latitude processes from this point on began to take over and influence most strongly the d18O record, which now reflects ice-volume fluctuations related to the climatic effects of obliquity forcing on the seasonality of high-latitude areas, most probably in the Northern Hemisphere. The general Pliocene trend is that high-latitude climate sensitivity and instability was increasing, and the causal factors producing the intensified glacial cyclicity during the Pliocene must be factors that enhance cooling and climate sensitivity in the subarctic areas.
    Schlagwort(e): 130-806B; Depth, composite; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Globigerinoides sacculifer sac, δ18O; Intercore correlation; Joides Resolution; Leg130; Mass spectrometer Finnigan MAT 251; North Pacific Ocean; Ocean Drilling Program; ODP
    Materialart: Dataset
    Format: text/tab-separated-values, 2084 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Bassinot, Franck C; Marsters, Janice C; Mayer, Larry A; Wilkens, Roy H (1993): Variations of porosity in calcareous sediments from the Ontong Java Plateau. In: Berger, WH; Kroenke, LW; Mayer, LA; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 130, 653-661, https://doi.org/10.2973/odp.proc.sr.130.058.1993
    Publikationsdatum: 2024-04-11
    Beschreibung: Based on index properties measurements made on board the JOIDES Resolution, we studied porosity changes with depth in the fairly homogeneous deep-sea calcareous sediments cored during Ocean Drilling Program Leg 130 on the Ontong Java Plateau. Using Leg 130 data, we present evidence that the rate of porosity decrease with burial in calcareous oozes and chalks is related to the depth of deposition and thus probably depends on the "conditioning" of calcareous sediments by winnowing or dissolution processes during the time of deposition. The ooze-to-chalk transition is not clearly reflected in porosity profiles. In the ooze-chalk sections studied (the upper 600 mbsf), mechanical compaction is most likely the major process controlling the porosity decrease with depth of burial, whereas the chalk-limestone transition (at about 1100 mbsf at Site 807) is characterized by an intense chemical compaction leading to a drastic decrease in porosity values within 100 m. In oozes and chalks, porosity values were corrected to "original" (uncompacted) values using site-specific empirical regression equations. When plotted vs. age, corrected porosity profiles appear to correlate quite well from site to site in the sediments deposited during the last 15 m.y. This observation has considerable implications for seismic stratigraphy. Our attempt to correlate variations in porosity (or wet-bulk density) profiles with changes in carbonate content remained unsatisfactory. Index properties changes are likely caused by changes in the foraminifer content. If this is the case, we propose that large-scale porosity fluctuations that correlate from site to site are the result of changes in the surface productivity that lead to changes in the foraminifers-to-nannofossils ratio.
    Schlagwort(e): 130-803D; 130-805B; 130-806B; 130-807A; Age model; Ageprofile Datum Description; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Event label; Joides Resolution; Leg130; North Pacific Ocean; Ocean Drilling Program; ODP; West equatorial Pacific Ocean
    Materialart: Dataset
    Format: text/tab-separated-values, 72 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...