GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Taylor & Francis  (1)
  • Wiley  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2023-03-13
    Description: It is well known that modern resting cysts with morphologies matching those of species of the fossil genus Spiniferites germinate into motile cells of the genus Gonyaulax. Different Spiniferites species have been connected to a single Gonyaulax species, raising the question of whether they are over-classified. Through germination experiments of cysts with the morphological features of four species of Spiniferites, viz. S. bentorii, S. hyperacanthus, S. ramosus and S. scabratus, we established cyst-theca relationships. Cysts with the morphology of S. bentorii gave rise to vegetative, motile cells of Gonyaulax nezaniae sp. nov., which is characterized by two stout antapical spines. Cysts with S. hyperacanthus and S. ramosus morphologies germinated into Gonyaulax whaseongensis and G. spinifera, respectively. Cysts with S. scabratus morphology lacked a ventral pore and were attributed to Gonyaulax cf. spinifera. Gene sequences for SSU, LSU and/or ITS-5.8S rRNA were obtained from these four species, and from cysts with the morphology of Spiniferites belerius, S. mirabilis, S. lazus, Spiniferites cf. bentorii and Tectatodinium pellitum. The maximum likelihood and Bayesian inference analyses based on LSU and SSU rRNA gene sequences revealed that cysts assignable to Spiniferites formed a polyphyletic group, intermingled with Tectatodinium, Bitectatodinium, Ataxiodinium and Impagidinium, whereas Gonyaulax species appeared as monophyletic. From our results we inferred the phylogenetic positions of S. bentorii, S. mirabilis, S. lazus, S. scabratus, Tectatodinium pellitum and Gonyaulax digitale for the first time, supporting the idea that Spiniferites species are not over-classified and each of them may correspond to different Gonyaulax species.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-26
    Description: Dinoflagellate cysts and other palynomorphs were studied from ODP Hole 1002C in the Cariaco Basin over the past 30 000 years. The assemblage shifts between a dominance of heterotrophic dinoflagellate cysts (mainly Brigantedinium spp., Lejeunecysta spp., Selenopemphix nephroides and Stelladinium reidii) and autotrophic dinoflagellate cysts (mainly Spiniferites ramosus, Lingulodinium machaerophorum and Operculodinium centrocarpum). These assemblage shifts are associated with stronger upwelling during stadials and stronger river influx during interstadials. Increases in productivity caused by enhanced upwelling are coupled to improved preservation and vice versa. More stratified water is indicated by higher abundances of L. machaerophorum and succeeds Heinrich events. The average process length of L. machaerophorum can be used to track changes in salinity, since this shows a similar pattern as the δ18OSW (paired Mg/Ca −δ18O) reconstruction. During the last glacial, conditions were more saline than during the current interglacial. On a millennial scale, changes in salinity are opposite to open ocean salinities and the hydrological proxies, which can be explained by a modulation of the signal by stratification, isolation of the Basin or advection of freshwater masses. These results highlight both generalities and particularities of the palaeoecological record of this tropical semi-enclosed basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...