GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Li, F., Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., de Jong, M. F., DeYoung, B., Fraser, N., Fried, N., Han, G., Holliday, N. P., Holte, J., Houpert, L., Inall, M. E., Johns, W. E., Jones, S., Johnson, C., Karstensen, J., Le Bras, I. A., P. Lherminier, X. Lin, H. Mercier, M. Oltmanns, A. Pacini, T. Petit, R. S. Pickart, D. Rayner, F. Straneo, V. Thierry, M. Visbeck, I. Yashayaev & Zhou, C. Subpolar North Atlantic western boundary density anomalies and the Meridional Overturning Circulation. Nature Communications, 12(1), (2021): 3002, https://doi.org/10.1038/s41467-021-23350-2.
    Beschreibung: Changes in the Atlantic Meridional Overturning Circulation, which have the potential to drive societally-important climate impacts, have traditionally been linked to the strength of deep water formation in the subpolar North Atlantic. Yet there is neither clear observational evidence nor agreement among models about how changes in deep water formation influence overturning. Here, we use data from a trans-basin mooring array (OSNAP—Overturning in the Subpolar North Atlantic Program) to show that winter convection during 2014–2018 in the interior basin had minimal impact on density changes in the deep western boundary currents in the subpolar basins. Contrary to previous modeling studies, we find no discernable relationship between western boundary changes and subpolar overturning variability over the observational time scales. Our results require a reconsideration of the notion of deep western boundary changes representing overturning characteristics, with implications for constraining the source of overturning variability within and downstream of the subpolar region.
    Beschreibung: We acknowledge funding from the Physical Oceanography Program of the U.S. National Science Foundation (OCE-1259398, OCE-1756231, OCE-1948335); the U.K. Natural Environment Research Council (NERC) National Capability programs the Extended Ellett Line and CLASS (NE/R015953/1), and NERC grants UK-OSNAP (NE/K010875/1, NE/K010875/2, NE/K010700/1) and U.K. OSNAP Decade (NE/T00858X/1, NE/T008938/1). Additional support was received from the European Union 7th Framework Program (FP7 2007-2013) under grant 308299 (NACLIM), the Horizon 2020 research and innovation program under grants 727852 (Blue-Action), 862626 (EuroSea). We also acknowledge support from the Royal Netherlands Institute for Sea Research, the Surface Water and Ocean Topography-Canada (SWOT-C), Canadian Space Agency, the Aquatic Climate Change Adaptation Services Program (ACCASP), Fisheries and Oceans Canada, an Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, and from the China’s national key research and development projects (2016YFA0601803), the National Natural Science Foundation of China (41925025) and the Fundamental Research Funds for the Central Universities (201424001). Support for the 53°N array by the RACE program of the German Ministry BMBF is acknowledged, as is the contribution from Fisheries and Oceans Canada’s Atlantic Zone Monitoring Program.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Nature Research
    In:  Nature Communications, 9 (1). Art.Nr. 690.
    Publikationsdatum: 2021-03-19
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Nature Research
    In:  Nature, 534 (7607). pp. 320-322.
    Publikationsdatum: 2019-09-23
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-09-23
    Beschreibung: The 2030 Agenda for Sustainable Development includes a set of 17 Sustainable Development Goals (SDG) with 169 specific targets. As such, it could be a step forward in achieving efficient governance and policies for global sustainable development. However, the current indicator framework with its broad set of individual indicators prevents straightforward assessment of synergies and trade-offs between the various indicators, targets, and goals thus heightening the significance of policy guidance in achieving sustainable development. With our detailed analysis of SDG 14 (Ocean) for European Union coastal states, we demonstrate how the (complementary) inclusion of composite indicators that aggregate the individual indicators by applying a generalized mean can provide important additional information and facilitate the assessment of sustainable development in general and in the SDG context in particular. Embedded in the context of social choice theory, the generalized mean varies the specification of substitution elasticity and thus allows a) for a straightforward distinction between a concept of weak and strong sustainability and b) for straightforward sensitivity analysis. We show that while in general the EU coastal states have a fairly balanced record at the SDG 14 level, certain countries like Slovenia and Portugal with a fairly balanced and a fairly unbalanced showing, respectively, rank very differently in terms of the two concepts of strong sustainability.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    Nature Research
    In:  Nature, 542 (7641). pp. 335-339.
    Publikationsdatum: 2020-06-18
    Beschreibung: Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean1, 2. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies3, 4, 5, 6. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean1, 7, 8, 9, 10, with an increase reported in a few limited areas, varying by study1, 10. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (1012 mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s10. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (1015 mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption11, 12.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2017-01-12
    Beschreibung: Goal 14 of the United Nations' Sustainable Development Goals (SDGs) is dedicated to conserving and using the oceans and their resources for sustainable development. We suggest that a 'gross marine product' (GMP) index — a measure of the oceans' natural capital — would be invaluable for achieving this goal. The seas provide us with food, materials, livelihoods and recreation. Managing these ecosystem services effectively can help us to eradicate poverty, develop sustainable economies and adapt to global environmental changes. Yet international-resource experts and national strategies still focus largely on goods and services delivered by terrestrial ecosystems (see go.nature.com/2bcqjr0). A GMP index would provide a measure of marine ecosystem goods and services on a national or global scale, derived from estimates for individual oceans. More international research will be necessary to underpin these estimates. The results would inform decision-makers, the private sector and the public on how they could help to achieve goal 14, as well as the 60 targets across most of the 17 SDGs that are relevant to the sustainable development of coastal zones. An integrated programme that measures, monitors and assesses the health of human–ocean systems should oversee their sustainability.
    Materialart: Article , NonPeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Eos: Earth & Space Science News, 97 .
    Publikationsdatum: 2019-09-23
    Beschreibung: Sustainable Ocean Development — A Perspective from Former, Current and Future Kiel Marine Scientists; New York, 28–30 September 2015
    Materialart: Article , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (3). pp. 1724-1748.
    Publikationsdatum: 2020-02-06
    Beschreibung: Over the past 17 years, the western boundary current system of the Labrador Sea has been closely observed by maintaining the 53°N observatory (moorings and shipboard station data) measuring the top-to-bottom flow field offshore from the Labrador shelf break. Volume transports for the North Atlantic Deep Water (NADW) components were calculated using different methods, including gap filling procedures for deployment periods with suboptimal instrument coverage. On average the Deep Western Boundary Current (DWBC) carries 30.2 ± 6.6 Sv of NADW southward, which are almost equally partitioned between Labrador Sea Water (LSW, 14.9 ± 3.9 Sv) and Lower North Atlantic Deep Water (LNADW, 15.3 ± 3.8 Sv). The transport variability ranges from days to decades, with the most prominent multiyear fluctuations at interannual to near decadal time scales (±5 Sv) in the LNADW overflow water mass. These long-term fluctuations appear to be in phase with the NAO-modulated wind fluctuations. The boundary current system off Labrador occurs as a conglomerate of nearly independent components, namely, the shallow Labrador Current, the weakly sheared LSW range, and the deep baroclinic, bottom-intensified current core of the LNADW, all of which are part of the cyclonic Labrador Sea circulation. This structure is relatively stable over time, and the 120 km wide boundary current is constrained seaward by a weak counterflow which reduces the deep water export by 10–15%.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-03-09
    Beschreibung: Long‐term observations from a 17 year long mooring array at the exit of the Labrador Sea at 53°N are compared to the output of a high‐resolution model (VIKING20). Both are analyzed to define robust integral properties on basin and regional scale, which can be determined and evaluated equally well. While both, the observations and the model, show a narrow DWBC cyclonically engulfing the Labrador Sea, the model's boundary current system is more barotropic than in the observations and spectral analysis indicates stronger monthly to interannual transport variability. Compared to the model, the observations show a stronger density gradient, hence a stronger baroclinicity, from center to boundary. Despite this, the observed temporal evolution of the temperature in the central Labrador Sea is reproduced. The model results yield a mean export of North Atlantic Deep Water (NADW) (33.0 +/‐ 5.7 Sv), which is comparable to the observed transport (31.2 +/‐ 5.5 Sv) at 53°N. The results also include a comparable spatial pattern and March mixed layer depth in the central Labrador Sea (maximum depth ∼ 2000 m). During periods containing enhanced deep convection (1990's) our analyses show increased correlation between LSW and LNADW model transport at 53°N. Our results indicate that the transport variability in LSW and LNADW at 53°N is a result of a complex modulation of wind stress and buoyancy forcing on regional and basin wide scale.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2024-02-07
    Beschreibung: There is debate about slowing of the Atlantic Meridional Overturning Circulation (AMOC), a key component of the global climate system. Some focus is on the sea surface temperature (SST) slightly cooling in parts of the subpolar North Atlantic despite widespread ocean warming. Atlantic SST is influenced by the AMOC, especially on decadal timescales and beyond. The local cooling could thus reflect AMOC slowing and diminishing heat transport, consistent with climate model responses to rising atmospheric greenhouse gas concentrations. Here we show from Atlantic SST the prevalence of natural AMOC variability since 1900. This is consistent with historical climate model simulations for 1900–2014 predicting on average AMOC slowing of about 1 Sv at 30° N after 1980, which is within the range of internal multidecadal variability derived from the models’ preindustrial control runs. These results highlight the importance of systematic and sustained in-situ monitoring systems that can detect and attribute with high confidence an anthropogenic AMOC signal.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...