GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (1)
  • Wiley  (1)
  • 1
    Publication Date: 2018-09-03
    Description: We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. Aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961-1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961–1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation-surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute to global sea level rise between 1.9 and 13.0cm until the year 2100 and between 3.5 and 76.4cm until the year 2300, including our simulated additional sea level rise due to elevation-surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7cm, and in the year 2300 it ranges from 1.7 to 21.8cm. Additionally, taking Helheim and Store Glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research: Earth Surface, Wiley, 123, pp. 2802-2826
    Publication Date: 2018-12-20
    Description: Recovery Glacier reaches far into the East Antarctic Ice Sheet. Recent projections point out that its dynamic behavior has a considerable impact on future Antarctic ice loss (Golledge et al., 2017, https://doi.org/10.1002/2016GL072422). Subglacial lakes are thought to play a major role in the initiation of the rapid ice flow (Bell et al., 2007, https://doi.org/10.1038/nature05554). Satellite altimetry observations have even suggested several actively filling and draining subglacial lakes beneath the main trunk (B. E. Smith et al., 2009, https://doi.org/10.3189/002214309789470879). We present new data of the geometry of this glacier and investigate its basal properties employing radio-echo sounding. Using ice sheet modeling, we were able to constrain estimates of radar absorption in the ice, but uncertainties remain large. The magnitude of the basal reflection coefficient is thus still poorly known. However, its spatial variability, in conjunction with additional indicators, can be used to infer the presence of subglacial water. We find no clear evidence of water at most of the previously proposed lake sites. Especially, locations, where altimetry detected active lakes, do not exhibit lake characteristics in radio-echo sounding. We argue that lakes far upstream the main trunk are not triggering enhanced ice flow, which is also supported by modeled subglacial hydrology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...