GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-02-28
    Description: Geochemical data (CH4, SO42−, I−, Cl−, particulate organic carbon (POC), δ13C-CH4, and δ13C-CO2) are presented from the upper 30 m of marine sediment on a tectonic submarine accretionary wedge offshore southwest Taiwan. The sampling stations covered three ridges (Tai-Nan, Yung-An, and Good Weather), each characterized by bottom simulating reflectors, acoustic turbidity, and different types of faulting and anticlines. Sulfate and iodide concentrations varied little from seawater-like values in the upper 1–3 m of sediment at all stations; a feature that is consistent with irrigation of seawater by gas bubbles rising through the soft surface sediments. Below this depth, sulfate was rapidly consumed within 5–10 m by anaerobic oxidation of methane (AOM) at the sulfate-methane transition. Carbon isotopic data imply a mainly biogenic methane source. A numerical transport-reaction model was used to identify the supply pathways of methane and estimate depth-integrated turnover rates at the three ridges. Methane gas ascending from deep layers, facilitated by thrusts and faults, was by far the dominant term in the methane budget at all sites. Differences in the proximity of the sampling sites to the faults and anticlines mainly accounted for the variability in gas fluxes and depth-integrated AOM rates. By comparison, methane produced in situ by POC degradation within the modeled sediment column was unimportant. This study demonstrates that the geochemical trends in the continental margins offshore SW Taiwan are closely related to the different geological settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Gashydrate sind eisähnliche Verbindungen, in denen Hydratbildner, z.B. Methan, in hoher Dichte gespeichert werden können. Methanhydrate sind nur bei hohen Drücken und tiefen Temperaturen sowie in Anwesenheit hoher Methankonzentrationen stabil. Diese Stabilitätsbedingungen sind unter bestimmten Voraussetzungen in marinen Sedimenten erfüllt, in denen Methan durch den mikrobiellen Abbau von abgelagerter Biomasse entsteht oder aus größeren Tiefen zugeführt wird. Die globale Menge an Methan in marinen Gashydraten überschreitet die Menge an Erdgas in konventionellen Lagerstätten vermutlich um ein Mehrfaches. Eine potenzielle Nutzung von Gashydraten als zukünftige Energiequelle wird daher gegenwärtig weltweit untersucht. Erste Feldtests in Permafrostregionen und marinen Lagerstätten haben gezeigt, dass eine Produktion von Methan aus Gashydraten prinzipiell möglich ist. Eine Förderung von Methan aus Gashydraten kann technisch realisiert werden mittels Druckabsenkung, durch thermische Stimulation oder chemische Aktivierung. Die Injektion von CO2, ebenfalls ein Hydratbildner, kann eine solche Aktivierung der natürlichen Hydrate bewirken und das Methan in der Hydratstruktur ersetzen. Infolgedessen erscheint eine verfahrenstechnische Kombination von Hydratabbau und CO2-Speicherung als besonders sinnvoll, da im Idealfall eine emissionsarme bis -freie Energiegewinnung ermöglicht würde. Untersuchungen zur Aufklärung mechanistischer und fluiddynamischer Aspekte der CH4-CO2-Hydratumwandlung sowie zur Entwicklung eines technischen Verfahrens werden in unterschiedlichen Hochdruckanlagen auf verschiedenen Skalen durchgeführt. Diese speziellen Systeme bieten die Möglichkeit, marine Druck-, Temperatur- und Durchflussbedingungen zu simulieren. Sie sind mit verschiedenen Sensoren und Messsystemen (z.B. CTD, IR, Raman, MRI) ausgerüstet, um den Prozessverlauf störungsfrei zu überwachen. Basierend auf derzeitigen Ergebnissen erscheint die Injektion von erwärmtem, überkritischem CO2 als vielversprechender technischer Baustein für die Verfahrensentwicklung. Die Zuführung von Wärmeenergie bewirkt die initiale Destabilisierung der Gashydrate und die Freisetzung von CH4, während nach Abkühlung das CO2 seinerseits Hydrate bildet und als feste, immobile Phase im Sediment zurückgehalten wird. Sowohl Methanproduktion als auch CO2-Speicherung sind dabei abhängig von der Reservoirtemperatur, so dass die Prozesseffizienz und -ausbeute bei mittleren Temperaturen (8°C) höher ist als bei niedrigeren (2°C) und höheren Temperaturen (10°C). Dies deutet darauf hin, dass der Gesamtprozess durch die Raten der jeweiligen Teilreaktionen der Hydratzersetzung und Hydratneubildung stark beeinflusst wird. Der experimentelle Vergleich unterschiedlicher Injektionsmodi zeigt, dass eine alternierende CO2-Injektion bestehend aus Injektions- und Reaktionsintervallen höhere Ausbeuten erreicht als eine kontinuierliche Injektion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...