GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-09-28
    Description: Microbial aerobic methane oxidation (MOx) is intrinsically coupled to the production of carbon dioxide, favoring carbonate dissolution. Recently, microbial organic polymers were shown to be able to induce carbonate dissolution. To discriminate between different mechanisms causing calcite dissolution, experiments were conducted in the presence of solid calcite with (1) actively growing cells (2) starving cells, and (4) dead cells of the methanotrophic bacterium Methylosinus trichosporium under brackish conditions (salinity 10) near calcite saturation (saturation state (Ω) 1.76 to 2.22). Total alkalinity and the amount of dissolved calcium markedly increased in all experiments containing M. trichosporium cells. After initial system equilibration, similar calcite dissolution rates, ranging between 14.9 (dead cells) and 29.6 μmol l−1 d−1 (actively growing cells), were observed. While concentrations of transparent exopolymer particles declined with time in the presence of actively growing and starving cells, they increased in experiments with dead cells. Scanning electron microscopy images of calcite crystals revealed visible surface corrosion after exposure to live and dead M. trichosporium cells. The results of this study indicate a strong potential for microbial MOx to affect calcite stability negatively, facilitating calcite dissolution. In addition to CO2 production by methanotrophically active cells, we suggest that the release of acidic or Ca2+-chelating organic carbon compounds from dead cells could also enhance calcite dissolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Microbial metabolisms in sediments play a pivotal role in marine element cycling. In hydrothermal sediments chemosynthetic microorganisms likely prevail, while in non-hydrothermally impacted sediment regimes microorganisms associated with organic matter decomposition are primarily recognized. To test how these microorganisms are distributed along the hitherto neglected transition zone influenced to different degrees by hydrothermal input we sampled four sediment sites: these were (i) near an active vent, (ii) the outer rim, and (iii) the inactive area of the Kairei hydrothermal field as well as (iv) sediments roughly 200 km south-east of the Kairei field. Chemistry and microbial community compositions were different at all sampling sites. Against expectations, the sediments near the active vent did not host typical chemosynthetic microorganisms and chemistry did not indicate current, extensive hydrothermal venting. Data from the outer rim area of the active Kairei field suggested microbially mediated saponite production and diffuse hydrothermal flow from below accompanied by increased metal concentrations. A steep redox gradient in the inactive Kairei field points towards significant redox driven processes resulting in dissolution of hydrothermal precipitates and intense metal mobilization. Local microorganisms were primarily Chloroflexi, Bacillales, Thermoplasmata, and Thaumarchaeota.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...