GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5117
    Keywords: predation ; Corophium arenarium ; prey escape ; drift ; zonation ; Nereis diversicolor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the European Wadden Sea, the nemertine Tetrastemma melanocephalumoccurs together with its prey, the amphipod Corophium arenarium, in the upper intertidal zone. T. melanocephalumleaves the sediment when the tide has receded and captures C. arenarium in its U-shaped burrow. Highest abundances of T. melanocephalumon the sediment surface were found on summer evenings, 2–4 h after high tide, when just a thin film of water was left on the flats. Laboratory Y-maze experiments indicated that gradients of substances produced by C. arenarium in this film of water play a role in tracking the prey. In the field, T. melanocephalum appeared in significantly higher numbers on experimental high density patches of C. arenarium. The amphipod in turn is able to recognize the nemertine. In aquarium experiments, significantly more amphipods escaped from the sediment into the water column when the predator was present. In the field, both predator and prey showed a high mobility by drifting in tidal waters. Benthic abundance maxima of T. melanocephalum and C. arenariumusually did not coincide spatially. It is assumed that the nemertines avoid tidal flats that dry out quickly leaving too little time for prey capture. T. melanocephalum is not able to dig into the sediment, but lives in burrows of Nereis diversicolor. The abundance of this polychaete was inversely related to C. arenarium, presenting a dilemma for T. melanocephalum: the spatial overlap of food and accommodation was rather small.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  Marine Biology, 142 . pp. 937-947.
    Publication Date: 2018-06-07
    Description: In marine invertebrates multiple modes of development, or poecilogony, may occur in a single species. However, after close examination, many of such putative cases turned out to be sibling species. A case in point may be the cosmopolitan orbiniid polychaete Scoloplos armiger, which inhabits marine shallow sediments. In addition to the well-known direct, holobenthic development from egg cocoons, pelagic larvae have also been described. Our culture experiments revealed a spatially segregated source of the two developmental modes. All females of an intertidal population produced egg cocoons and no pelagic larvae. All but 2 out of 15 females of an adjacent subtidal population produced pelagic larvae and no egg cocoons. Based on these results we performed a molecular genetic analysis (RAPD-PCR) on three intertidal and four subtidal populations in the North Sea. Selected samples from all sites were analysed also by the AFLP method. We found significantly higher genetic diversity within subtidal than within intertidal populations. This is consistent with a wider dispersal by pelagic larvae and a smaller effective population size when development is holobenthic. Total genetic divergence is not related to distance but to the intertidal/subtidal division. We suggest that S. armiger actually represents two sibling species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-07
    Description: Two distinct modes of development in the common polychaete Scoloplos armiger (O. F. Müller, 1776) occur in the North Sea region: holobenthic development in egg cocoons and pelagic larvae hatching from suspended eggs. In the northern Wadden Sea near the island of Sylt, we observed that egg cocoons are produced intertidally while pelagic larvae originate from the adjacent subtidal zone. A previous genetic comparison between these subtidal and intertidal populations revealed distinct gene pools, suggesting that reproductive differences are not phenotypic but heritable. In this study, crossbreeding experiments show that intertidal and subtidal populations are reproductively isolated. Couples with males and females from different habitats had no offspring. Production of egg cocoons is determined by female origin from the intertidal zone. Pelagic larvae occurred only in couples with subtidal females and subtidal males. Intertidal males have spermatozoa with heads twice as long as those from subtidal males and a significantly shorter flagellum. We suspect that deviating sperm morphology may cause the reproductive breakdown at the fertilization stage. Juveniles hatching from cocoons have shorter anal cirri compared to juveniles that metamorphosed from pelagic larvae. We conclude there to be two sympatric sibling species in S. armiger: 'type I' in intertidal areas, which have egg cocoons, no pelagic larvae, elongated sperm heads, shortened sperm flagella and anal cirri; and a subtidal 'type S', lacking egg cocoons but with pelagic larvae, short sperm heads, long sperm flagella and anal cirri.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  Hydrobiologia, 456 (1/3). pp. 21-32.
    Publication Date: 2017-01-30
    Description: The ecology of nemertean predators in marine ecosystems is reviewed. Nemerteans occur in most marine environments although usually in low abundances. Some species, particularly in intertidal habitats, may reach locally high densities. During specific time periods appropriate for hunting, nemerteans roam about in search of prey. Upon receiving a stimulus (usually chemical cues), many nemertean species actively pursue their prey and follow them into their dwellings or in their tracks. Other species (many hoplonemerteans) adopt a sit-and-wait strategy, awaiting prey items in strategic locations. Nemerteans possess potent neurotoxins, killing even highly mobile prey species within a few seconds and within the activity range of its attacker. Most nemertean species prey on live marine invertebrates, but some also gather on recently dead organisms to feed on them. Heteronemerteans preferentially feed on polychaetes, while most hoplonemerteans prey on small crustaceans. The species examined to date show strong preferences for selected prey species, but will attack a variety of alternative prey organisms when deprived of their favourite species. Ontogenetic changes in prey selection appear to occur, but no further information about, e.g. size selection, is available. Feeding rates as revealed from short-term laboratory experiments range on the order of 1–5 prey items d–1. These values apparently are overestimates, since long-term experiments report substantially lower values (0.05–0.3 prey items d–1). Nemerteans have been reported to exert a strong impact on the population size of their prey organisms through their predation activity. Considering low predation rates, these effects may primarily be a result of indirect and additive interactions. We propose future investigations on these interactive effects in combination with other predators. Another main avenue of nemertean ecological research appears to be the examination of their role in highly structured habitats such as intertidal rocky shore and coral reef environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-30
    Description: In the European Wadden Sea, the nemertine Tetrastemma melanocephalumoccurs together with its prey, the amphipod Corophium arenarium, in the upper intertidal zone. T. melanocephalumleaves the sediment when the tide has receded and captures C. arenarium in its U-shaped burrow. Highest abundances of T. melanocephalumon the sediment surface were found on summer evenings, 2–4 h after high tide, when just a thin film of water was left on the flats. Laboratory Y-maze experiments indicated that gradients of substances produced by C. arenarium in this film of water play a role in tracking the prey. In the field, T. melanocephalum appeared in significantly higher numbers on experimental high density patches of C. arenarium. The amphipod in turn is able to recognize the nemertine. In aquarium experiments, significantly more amphipods escaped from the sediment into the water column when the predator was present. In the field, both predator and prey showed a high mobility by drifting in tidal waters. Benthic abundance maxima of T. melanocephalum and C. arenariumusually did not coincide spatially. It is assumed that the nemertines avoid tidal flats that dry out quickly leaving too little time for prey capture. T. melanocephalum is not able to dig into the sediment, but lives in burrows of Nereis diversicolor. The abundance of this polychaete was inversely related to C. arenarium, presenting a dilemma for T. melanocephalum: the spatial overlap of food and accommodation was rather small.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Global change exposes brown algal Fucus vesiculosus populations to increasing temperature and pCO2, which may threaten individuals, in particular the early life-stages. Genetic diversity of F. vesiculosus populations is low in the Baltic compared to Atlantic populations. This might jeopardise their potential for adaptation to environmental changes. Here, we report on the responses of early life-stage F. vesiculosus to warming and acidification in a near-natural scenario maintaining natural and seasonal variation (spring 2013–2014) of the Kiel Fjord in the Baltic Sea, Germany (54°27ʹN, 10°11ʹW). We assessed how stress sensitivity differed among sibling groups and how genetic diversity of germling populations affected their stress tolerance. Warming increased growth rates of Fucus germlings in spring and in early summer, but led to higher photoinhibition in spring and decreased their survival in late summer. Acidification increased germlings’ growth in summer but otherwise showed much weaker effects than warming. During the colder seasons (autumn and winter), growth was slow while survival was high compared to spring and summer, all at ambient temperatures. A pronounced variation in stress response among genetically different sibling groups (full-sib families) suggests a genotypic basis for this variation and thus a potential for adaptation for F. vesiculosus populations to future conditions. Corroborating this, survival in response to warming in populations with higher diversity was better than the mean survival of single sibling groups. We conclude that impacts on early life-stages depend on the combination of stressors and season and that genetic variation is crucial for the tolerance to global change stress.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-21
    Description: Host specificity is a key variable of the niche breath of parasites that can be an important determinant of a parasite’s ability to invade new areas. There is increasing evidence that many parasite species may comprise a variety of genetically variable lineages, which differ in host specificity and geographic range. In this study, we (1) explored the extent of diversity in the invasive parasitic barnacle Loxothylacus panopaei (Rhizocephala) infecting mud crabs (2) examined the geographic origin for the invasive lineage and (3) assessed if further southward spread of the parasite may be impeded. Along the US Atlantic coast, L. panopaei infects different hosts in its invaded range (Chesapeake Bay to north of Cape Canaveral) compared to one portion of the native range in Southeast Florida. This difference was reflected in genetic lineages on two independent loci, mitochondrial cytochrome oxidase I and nuclear cytochrome c. Both loci were concordant in that they showed one lineage infecting crabs of the genus Panopeus in the native range and one lineage infecting Eurypanopeus depressus and Rhithropanopeus harrisii hosts in the invaded range and in the Gulf of Mexico, thus indicating Gulf of Mexico populations as the most likely source of introduction into Chesapeake Bay. Interestingly, the nuclear marker resolved an additional lineage of parasites infecting panopeid hosts in the native range. All three parasite lineages were well supported, but a decision about species status must await further analyses. Since its introduction in the 1960s, the invasive L. panopaei lineage has expanded its range southward along the US Atlantic coast, now almost reaching the northern limit of native Panopeus-infecting lineages at Cape Canaveral, Florida. We hypothesized that parasite-free E. depressus in Southeast Florida, living in sympatry with infected panopeid populations, might be resistant to infection by the invasive lineage. Our infection experiments rejected this hypothesis, suggesting that any impediment to further southward range expansion might be expected from temperature regimes of the subtropical zoogeographic region south of Cape Canaveral.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...