GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Cyanobacterium ; Trichodesmium ; Nitrogen-fixation ; Nitrogenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of various nitrogen sources on the synthesis and activity of nitrogenase was studied in the marine, non-heterocystous cyanobacterium Trichodesmium sp. NIBB1067 grown under defined culture conditions. Cells grown with N2 as the sole inorganic nitrogen source showed light-dependent nitrogenase activity (acetylene reduction). Nitrogenase activity in cells grown on N2 was not suppressed after 7 h incubation with 2 mM NaNO3 or 0.02 mM NH4Cl. However, after 3 h of exposure to 0.5 mM of urea, nitrogenase was inactivated. Cells grown in medium containing 2 mM NaNO3, 0.5 mM urea or 0.02 mM NH4Cl completely lacked the ability to reduce acetylene. Western immunoblots tested with polyclonal antisera against the Fe-protein and the Mo−Fe protein, revealed the following: (1) both the Fe-protein and the Mo−Fe protein were synthesized in cells grown with N2 as well as in cells grown with NaNO3 or low concentration of NH4Cl; (2) two bands (apparent molecular mass of 38 000 and 40 000) which cross-reacted with the antiserum to the Fe-protein, were found in nitrogen-fixing cells; (3) only one protein band, corresponding to the high molecular mass form of the Fe-protein, was found in cells grown with NaNO3 or low concentration of NH4Cl; (4) neither the Fe-protein nor the Mo−Fe protein was found in cells grown with urea; (5) the apparent molecular mass of the Fe-protein of Trichodesmium sp. NIBB1067 was about 5000 dalton higher than that of the heterocystous cyanobacterium, Anabaena cylindrica IAM-M1.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: absorption cross section of PS II ; chlorophyll fluorescence ; photoinhibition ; phytoplankton ; QA ; quantum efficiency of PS II ; UV radiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of PAR and UV radiation on PS II photochemistry were examined in natural phytoplankton communities from coastal waters off Rhode Island (USA) and the subtropical Pacific. The photochemical energy conversion efficiency, the functional absorption cross section and the kinetics of electron transfer on the acceptor side of PS II were derived from variable fluorescence parameters using both pump and probe and fast repetition rate techniques. In both environments, the natural phytoplankton communities displayed marked decreases in PS II photochemical energy conversion efficiency that were correlated with increased PAR. In the coastal waters, the changes in photochemical energy conversion efficiency were not statistically different for samples treated with supplementary UV-B radiation or screened to exclude ambient UV-B. Moreover, no significant light-dependent changes in the functional absorption cross section of PS II were observed. The rate of electron transfer between QA - and QB was, however, slightly reduced in photodamaged cells, indicative of damage on the acceptor side. In the subtropical Pacific, the decrease in photochemical energy conversion efficiency was significantly greater for samples exposed to natural levels of UV-A and/or UV-B compared with those exposed to PAR alone. The cells displayed large diurnal changes in the functional absorption cross section of PS II, indicative of non-photochemical quenching in the antenna. The changes in the functional absorption cross section were highly correlated with PAR but independent of UV radiation. The time course of changes in photochemical efficiency reveals that the photoinhibited reaction centers rapidly recover (within an hour or two) to their preillumination values. Thus, while we found definitive evidence for photoinhibition of PS II photochemistry in both coastal and open ocean phytoplankton communities, we did not find any effect of UV-B on the former, but a clear effect on the latter. The results of this study indicate that the effects of UV-B radiation on phytoplankton photosynthesis are as dependent on the radiative transfer properties of the water body and the mixing rate, as on the wavelength and energy distribution of the radiation and the absorption cross sections of the biophysical targets.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5079
    Keywords: algae ; chlorophyll ; Dunaliella ; fluorescence ; light-harvesting proteins ; Triton X-100
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Triton X-100, a detergent commonly used to solubilize higher plant thylakoid membranes, was found to be deleterious to Dunaliella LHC II. It disrupted the transfer of excitation energy from chlorophyll b to chlorophyll a. Based on analysis of pigments and immunoassays of LHC II apoproteins from sucrose density gradient fractions, Triton X-100 caused aggregation of the complex, but apparently did not remove chlorophyll b from the apoprotein. Following solubilization with Triton X-100 only CPI could be resolved by electrophoresis. In contrast, solubilization of Dunaliella thylakoids with octyl-β-D-glucopyranoside preserved energy transfer from chlorophyll b to chlorophyll a. This detergent also effectively prevented aggregation on sucrose gradients and preserved CPI oligomers, as well as LHCP1 and LHCP3 on non-denaturing gels. Solubilization with Deriphat gave similar results. We propose that room temperature fluorescence excitation and emission spectroscopy be used in conjunction with other biophysical and biochemical probes to establish the effects of detergents on the integrity of light harvesting chlorophyll protein complexes. Methods used here may be applicable to other chlorophytes which prove refractory to protocols developed for higher plants.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; electron transport ; phytoplankton ; quantum yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A Single Cell Fast Repetition Rate (SCFRR) fluorometer was developed to measure the quantum yield of photochemistry, the functional absorption cross section of PS II and the kinetics of electron transport on the acceptor side of PS II in individual algal cells. These parameters are used to quantify the cell-specific photosynthetic performance in natural phytoplankton assembledges in aquatic ecosystems. The SCFRR technique measures chlorophyll fluorescence transients induced by a precisely controlled series of excitation flashlets that cumulatively saturate PS II within 120 μs. To meet the requirement in the analysis for single algal cells, the measurements are conducted in micro volumes, such that the probability of probing more than one cell at a time is vanishingly low. We designed a novel, computer-controlled hydromechanical system to deliver a portion of the sample into the measuring chamber and, following measurement, remove it into one of six sorting containers. The fluorescence signal is induced by a series of high frequency flashlets obtained from high luminosity blue light-emitting diodes and is acquired by a novel red-sensitive PMT-based detection system exhibiting both high sensitivity and a very wide dynamic range. The wide dynamic range of the detector allows SCFRR measurements for a wide variety of cell sizes ranging from 1 to 100 μm equivalent spherical diameter. The compact and light-weight design makes the SCFRR Fluorometer applicable for both laboratory and field studies.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 39 (1994), S. 235-258 
    ISSN: 1573-5079
    Keywords: biogeochemical cycles ; oceans ; photoacclimation ; Photosystem II nutrient limitation ; phytoplankton quantum efficiency of photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phytoplankton biomass in the world's oceans amounts to only ∽1–2% of the total global plant carbon, yet these organisms fix between 30 and 50 billion metric tons of carbon annually, which is about 40% of the total. On geological time scales there is profound evidence of the importance of phytoplankton photosynthesis in biogeochemical cycles. It is generally assumed that present phytoplankton productivity is in a quasi steady-state (on the time scale of decades). However, in a global context, the stability of oceanic photosynthetic processes is dependent on the physical circulation of the upper ocean and is therefore strongly influenced by the atmosphere. The net flux of atmospheric radiation is critical to determining the depth of the upper mixed layer and the vertical fluxes of nutrients. These latter two parameters are keys to determining the intensity, and spatial and temporal distributions of phytoplankton blooms. Atmospheric radiation budgets are not in steady-state. Driven largely by anthropogenic activities in the 20th century, increased levels of IR- absorbing gases such as CO2, CH4 and CFC's and NOx will potentially increase atmospheric temperatures on a global scale. The atmospheric radiation budget can affect phytoplankton photosynthesis directly and indirectly. Increased temperature differences between the continents and oceans have been implicated in higher wind stresses at the ocean margins. Increased wind speeds can lead to higher nutrient fluxes. Throughout most of the central oceans, nitrate concentrations are sub-micromolar and there is strong evidence that the quantum efficiency of Photosystem II is impaired by nutrient stress. Higher nutrient fluxes would lead to both an increase in phytoplankton biomass and higher biomass-specific rates of carbon fixation. However, in the center of the ocean gyres, increased radiative heating could reduce the vertical flux of nutrients to the euphotic zone, and hence lead to a reduction in phytoplankton carbon fixation. Increased desertification in terrestrial ecosystems can lead to increased aeolean loadings of essential micronutrients, such as iron. An increased flux of aeolean micronutrients could fertilize nutrient-replete areas of the open ocean with limiting trace elements, thereby stimulating photosynthetic rates. The factors which limit phytoplankton biomass and photosynthesis are discussed and examined with regard to potential changes in the Earth climate system which can lead the oceans away from steady-state. While it is difficult to confidently deduce changes in either phytoplankton biomass or photosynthetic rates on decadal time scales, time-series analysis of ocean transparency data suggest long-term trends have occurred in the North Pacific Ocean in the 20th century. However, calculations of net carbon uptake by the oceans resulting from phytoplankton photosynthesis suggest that without a supply of nutrients external to the ocean, carbon fixation in the open ocean is not presently a significant sink for excess atmospheric CO2.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5079
    Keywords: diadinoxanthin ; diatoxanthin ; fluorescence-quenching ; photoprotection ; phytoplankton ; protein turn-over ; xanthophyll-cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The diadinoxanthin cycle (DD-cycle) in chromophyte algae involves the interconversion of two carotenoids, diadinoxanthin (DD) and diatoxanthin (DT). We investigated the kinetics of light-induced DD-cycling in the marine diatom Phaeodactylum tricornutum and its role in dissipating excess excitation energy in PS II. Within 15 min following an increase in irradiance, DT increased and was accompanied by a stoichiometric decrease in DD. This reaction was completely blocked by dithiothreitol (DTT). A second, time-dependent, increase in DT was detected ∼ 20 min after the light shift without a concomitant decrease in DD. DT accumulation from both processes was correlated with increases in non-photochemical quenching of chlorophyll fluorescence. Stern-Volmer analyses suggests that changes in non-photochemical quenching resulted from changes in thermal dissipation in the PS II antenna and in the reaction center. The increase in non-photochemical quenching was correlated with a small decrease in the effective absorption cross section of PS II. Model calculations suggest however that the changes in cross section are not sufficiently large to significantly reduce multiple excitation of the reaction center within the turnover time of steady-state photosynthetic electron transport at light saturation. In DTT poisoned cells, the change in non-photochemical quenching appears to result from energy dissipation in the reaction center and was associated with decreased photochemical efficiency. D1 protein degradation was slightly higher in samples poisoned with DTT than in control samples. These results suggest that while DD-cycling may dynamically alter the photosynthesis-irradiance response curve, it offers limited protection against photodamage of PS II reaction centers at irradiance levels sufficient to saturate steady-state photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 48 (1996), S. 395-410 
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; cyclic electron transport ; oxygen evolution ; Photosystem II ; quantum yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The oxygen flash yield (YO2) and photochemical yield of PS II (ΦPS II) were simultaneously detected in intact Chlorella cells on a bare platinum oxygen rate electrode. The two yields were measured as a function of background irradiance in the steady-state and following a transition from light to darkness. During steady-state illumination at moderate irradiance levels, YO2 and ΦPS II followed each other, suggesting a close coupling between the oxidation of water and QA reduction (Falkowski et al. (1988) Biochim. Biophys. Acta 933: 432–443). Following a light-to-dark transition, however, the relationship between QA reduction and the fraction of PS II reaction centers capable of evolving O2 became temporarily uncoupled. ΦPS II recovered to the preillumination levels within 5–10 s, while the YO2 required up to 60 s to recover under aerobic conditions. The recovery of YO2 was independent of the redox state of QA, but was accompanied by a 30% increase in the functional absorption cross-section of PS II (σPS II). The hysteresis between YO2 and the reduction of QA during the light-to-dark transition was dependent upon the reduction level of the plastoquinone pool and does not appear to be due to a direct radiative charge back-reaction, but rather is a consequence of a transient cyclic electron flow around PS II. The cycle is engaged in vivo only when the plastoquinone pool is reduced. Hence, the plastoquinone pool can act as a clutch that disconnects the oxygen evolution from photochemical charge separation in PS II.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5079
    Keywords: cyanobacteria ; iron-stress proteins ; light-harvesting complexes ; photosynthetic antennae ; photosystems ; prochlorophyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Apoproteins of the antenna complexes of Prochlorococcus marinus clone SS120 (= CCMP 1375) and Prochlorococcus sp. clone MED4 (= CCMP 1378) cross-reacted with an antibody against the 30 kDa CP 5 complex of Prochlorothrix hollandica antenna. For the MED4 strain, which has a high divinyl-chlorophyll a to divinyl-chlorophyll b (DV-Chl a/b) ratio ranging from 11.4 to 15.0 (w/w), the major antenna proteins had an apparent molecular mass of 32.5 kDa. In contrast for the SS120 strain, which has a low DV-Chl a/b ratio ranging from 1.1 to 2.2, antenna apoproteins were observed in the range 34–38 kDa. For both strains, these apoproteins decreased at high growth irradiance but more markedly in the latter. Partially purified antenna fractions had a DV-Chl a/b ratio ca. 7-fold lower for SS120 than for MED4 at 30 μmol photons m-2 s-1. For both strains, the 77 K fluorescence emission spectra of whole thylakoids displayed a major peak at 685 nm and a broad but very low shoulder above 700 nm. Energetic coupling of the antenna to both PS II and PSI reaction centers was demonstrated for SS120 by the strong contribution of DV-Chl b in both the 77 K excitation fluorescence spectra and the oxidized minus reduced absorption difference spectra of P700. The PS I to PS II ratio of Prochlorococcus SS120 was determined as being 0.7 ± 0.1 at low light.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5079
    Keywords: carbon fixation ; phytoplankton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Exposure of algae or higher plants to bright light can result in a photoinhibitory reduction in the number of functional PS II reaction centers (n) and a consequential decrease in the maximum quantum yield of photosynthesis. However, we found that light-saturated photosynthetic rates (Pmax) in natural phytoplankton assemblages sampled from the south Pacific ocean were not reduced despite photoinhibitory decreases in n of up to 52%. This striking insensitivity of Pmax to photoinhibition resulted from reciprocal increases in electron turnover ( $${1 \mathord{\left/ {\vphantom {1 {\tau _{PSII} }}} \right. \kern-\nulldelimiterspace} {\tau _{PSII} }}$$ )through the remaining functional PS II centers. Similar insensitivity of Pmax was also observed in low light adapted cultures of Thalassiosira weissflogii (a marine diatom), but not in high light adapted cells where Pmax decreased in proportion to n. This differential sensitivity to decreases in n occurred because $${1 \mathord{\left/ {\vphantom {1 {\tau _{PSII} }}} \right. \kern-\nulldelimiterspace} {\tau _{PSII} }}$$ was close to the maximum achievable rate in the high light adapted cells, whereas $${1 \mathord{\left/ {\vphantom {1 {\tau _{PSII} }}} \right. \kern-\nulldelimiterspace} {\tau _{PSII} }}$$ was initially low in the low light adapted cells and could thus increase in response to decreases in n. Our results indicate that decreases in plant productivity are not necessarily commensurate with photoinhibition, but rather will only occur if decreases in n are sufficient to maximize $${1 \mathord{\left/ {\vphantom {1 {\tau _{PSII} }}} \right. \kern-\nulldelimiterspace} {\tau _{PSII} }}$$ or incident irradiance becomes subsaturating.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 53 (1997), S. 229-241 
    ISSN: 1573-5079
    Keywords: light-harvesting antenna ; plastid signal ; plastoquinone pool
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The role of the redox state of ferredoxin/thioredoxin within the chloroplast is well established for the feedback regulation of enzyme activity in the Calvin cycle. However, evidence has emerged also suggesting that chloroplast electron transport components regulate plastid and nuclear gene expression. Using the unicellular green alga, Dunaliella tertiolecta, as a model organism, we have shown that the cell acclimates to changes in growth irradiance by altering the abundance and activities of photosynthetic components, in particular the light harvesting complexes (LHC). Pharmacological data suggests that light intensity is sensed through the redox status of the plastoquinone pool leading to the regulation of nuclear encoded genes, such as Lhcb. This signal may be transduced through a redox regulated protein kinase that (in)directly interacts with the nuclear transcription apparatus. The redox state of the plastoquinone pool seems to play a pivotal role in sensing cellular energy status and in regulating photosynthetic capacity. Other cellular pathways, including carbon fixation, carbohydrate metabolism and nutrient assimilation have been shown to have feedback influences on photosynthesis, that may be sensed by the redox state of the plastoquinone pool.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...