GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Waste products as fuel. ; Biomass energy. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (540 pages)
    Edition: 1st ed.
    ISBN: 9780128235270
    Language: English
    Note: Front Cover -- Half Title -- Title -- Copyright -- Contents -- Contributors -- Chapter 1 Waste to energy: an overview by global perspective -- 1.1 Introduction -- 1.2 Potential waste biomass -- 1.2.1 Agricultural and forest residue -- 1.2.2 Industrial waste biomass -- 1.2.3 Municipal waste biomass -- 1.2.4 Micro- and macroalgae waste biomass -- 1.3 Biofuels from waste -- 1.3.1 Biodiesel -- 1.3.2 Bioethanol fermentation -- 1.3.3 Bio-oil and biochar -- 1.3.4 Biomethane and biohydrogen -- 1.3.5 Syngas and bioelectricity -- 1.4 Socioeconomic perspective -- 1.5 Environmental perspective -- 1.6 Integrated approaches of biofuel from waste -- 1.7 Conclusion -- References -- Chapter 2 Potential of advanced photocatalytic technology for biodiesel production from waste oil -- 2.1 Introduction -- 2.1.1 Biodiesel-strength and weakness -- 2.1.2 Biodiesel as an alternative fuel -- 2.1.3 WCO as a feedstock for biodiesel production -- 2.2 Reaction process to produce biodiesel -- 2.2.1 Microemulsion technique -- 2.2.2 Direct use and blending technique -- 2.2.3 Pyrolysis of oil -- 2.2.4 Transesterification process -- 2.2.5 Esterification process -- 2.3 Catalyst for biodiesel production -- 2.4 Photocatalyst -- 2.4.1 Mechanism of photocatalysis -- 2.4.2 Important circumstances influence photocatalyst performance -- 2.4.3 Synthesis of photocatalysts -- 2.5 Fundamental of photocatalyst in biodiesel production -- 2.5.1 TiO2 as a photocatalyst in biodiesel production -- 2.5.2 Zinc oxide \(ZnO\) nanocatalyst as heterogeneous photocatalyst -- 2.6 Parameters affecting on photocatalytic esterification -- 2.6.1 Effect of alcohol to oil ratio -- 2.6.2 Effect of catalyst loading -- 2.6.3 Effect of stirring speed -- 2.6.4 Effect of UV irradiation time and lamp power -- 2.7 Conclusion -- Acknowledgments -- References. , Chapter 3 Biofuel production from food waste biomass and application of machine learning for process management -- 3.1 Introduction -- 3.2 Growing concern for food loss waste (FLW) -- 3.3 Conversion techniques -- 3.3.1 Biochemical technology -- 3.4 Thermochemical technology -- 3.4.1 Gasification -- 3.4.2 Pyrolysis -- 3.4.3 Liquefaction -- 3.5 Sustainable management of FW with machine learning -- 3.5.1 Machine learning overview for FW and biofuel -- 3.6 Prediction of energy demand and biofuel production from FW -- 3.6.1 Life cycle of machine learning-based energy demand and biofuel production -- 3.7 Conclusion -- References -- Chapter 4 Biological conversion of lignocellulosic waste in the renewable energy -- 4.1 Introduction -- 4.2 Lignocellulosic biomass and technical benefits -- 4.3 The role of bacteria in the decomposition of plant biomass and the production of RE -- 4.4 The future of RE and the challenges -- 4.5 Conclusion -- References -- Chapter 5 The potential of sustainable biogas production from animal waste -- 5.1 Introduction -- 5.2 Biogas components -- 5.3 Factors affecting biogas production -- 5.4 Anaerobic fermentation -- 5.4.1 Bacteria -- 5.4.2 Temperature -- 5.4.3 pH -- 5.4.4 Carbon to nitrogen ratio -- 5.4.5 Concentration of the solid in the feeding solution -- 5.4.6 Feeding rates of organic matter (degree of loading) -- 5.4.7 Time of solution remaining in the fermenter -- 5.4.8 Toxic substances in nutrition -- 5.4.9 Use prefixes -- 5.4.10 Flipping inside the fermenter -- 5.5 Environmental and economic benefits from biogas generation -- 5.6 The properties of the different gases compared to the biogas -- 5.7 Prospects for the development of biogas production technology and current problems -- 5.8 Conclusion -- References. , Chapter 6 Current and future trends in food waste valorization for the production of chemicals, materials, and fuels by advanced technology to convert food wastes into fuels and chemicals -- 6.1 Introduction -- 6.2 Food valorization to produce chemicals -- 6.2.1 Multitudinous valorization methods for chemical production -- 6.3 Transformation of food waste into bioenergy -- 6.3.1 Biogas formation -- 6.3.2 Biohydrogen production -- 6.3.3 Distinctive techniques for biofuel production -- 6.4 Conclusion -- References -- Chapter 7 Biochemical conversion of lignocellulosic waste into renewable energy -- 7.1 Introduction -- 7.2 Structural and functional attributes of LCMs -- 7.2.1 Socioeconomic aspects of LCMs -- 7.2.2 Biorefinery-based bioeconomy-considerations -- 7.2.3 Biotransformation of LCMs -- 7.2.4 Enzyme-based pretreatment of LCMs -- 7.2.5 Chemical-based pretreatment of LCMs -- 7.3 Biofuels generation -- 7.4 Conclusion and perspectives -- References -- Chapter 8 Recent trends on the food wastes valorization to value-added commodities -- 8.1 Introduction-food waste and its global scenario -- 8.2 FW hierarchy -- 8.3 FW-generating sectors -- 8.4 FW valorization to worth-added commodities -- 8.5 Biotransformation of FWs -- 8.6 Value-added components recovery -- 8.6.1 Recovery of organic acids -- 8.6.2 Nutraceuticals -- 8.6.3 Nanoparticles -- 8.6.4 Dietary fiber -- 8.7 Production of biomaterials and biofertilizer -- 8.7.1 Biopolymers -- 8.7.2 Single-cell protein (microbial biomass) -- 8.7.3 Bio-based colorants -- 8.7.4 Bioadsorbent -- 8.7.5 Biofertilizer -- 8.7.6 Bio-based high value-added products -- 8.7.7 Enzymes production from FW and their application -- 8.8 Conclusion and recommendations -- References -- Chapter 9 Thermochemical conversion methods of bio-derived lignocellulosic waste molecules into renewable fuels -- 9.1 Introduction. , 9.2 Lignocellulosic biomass -- 9.2.1 Sources of lignocellulosic biomass -- 9.2.2 Properties and composition of lignocellulosic biomass -- 9.3 Pretreatment techniques -- 9.3.1 Physical pretreatment technique -- 9.3.2 Chemical pretreatment technique -- 9.3.3 Physiochemical pretreatment technique -- 9.3.4 Biological pretreatment technique -- 9.3.5 Combination pretreatment technique -- 9.4 Thermochemical conversion of lignocellulosic biomass -- 9.4.1 Thermochemical lignocellulosic biorefineries -- 9.4.2 Biochemical refineries for the conversion of lignocellulosic biomass -- 9.4.3 Hybrid biorefineries -- 9.5 Conclusion -- References -- Chapter 10 Biodiesel production from waste cooking oil using ionic liquids as catalyst -- 10.1 Introduction -- 10.2 Recent trends -- 10.3 Waste cooking oil -- 10.4 Transesterification of WCO -- 10.5 Experimental analysis -- 10.5.1 Catalytic ethanolysis of waste cooking soybean oil using the IL [HMim][HSO4] -- 10.5.2 Preparation of a supported acidic IL on silica-gel and its application to the synthesis of biodiesel from WCO -- 10.5.3 Improving biodiesel yields from WCO using ILs as catalysts with a microwave heating system -- 10.5.4 Biodiesel production from WCO by acidic IL as a catalyst -- 10.5.5 Biodiesel production process by using new functionalized ILs as catalysts -- 10.6 Conclusion -- References -- Chapter 11 Valorization of waste cooking oil (WCO) into biodiesel using acoustic and hydrodynamic cavitation -- 11.1 Introduction -- 11.2 Biodiesel synthesis -- 11.2.1 Feedstock used for biodiesel synthesis -- 11.2.2 FFAs and their effect on biodiesel synthesis -- 11.2.3 Types of catalysts and its significance -- 11.3 Cavitation -- 11.3.1 Acoustic cavitation -- 11.3.2 HC and its mechanism -- 11.4 Review of current status of utilization of WCO for synthesis of biodiesel -- 11.4.1 Synthesis of biodiesel using AC. , 11.4.2 Synthesis of biodiesel using HC -- 11.5 Conclusion -- References -- Chapter 12 Production of biochar from renewable resources -- 12.1 Biochar definition -- 12.2 Biochar applications -- 12.3 Biochar production -- 12.3.1 Pyrolysis -- 12.3.2 Gasification -- 12.3.3 Hydrothermal carbonization -- 12.3.4 Other processes -- 12.4 Factors affecting biochar production -- 12.4.1 Feedstocks of biochar -- 12.4.2 Thermochemical temperature -- 12.5 Mechanism of biochar production -- 12.6 Conclusions -- References -- Chapter 13 Microbial fuel cell technology for bio-electrochemical conversion of waste to energy -- 13.1 Introduction -- 13.2 MFC technology -- 13.2.1 Technological background, performance indicators, and operating parameters -- 13.3 Role of microbial species and mechanism of electron transport in MFC -- 13.3.1 Substrate composition in MFC -- 13.3.2 Electrode material -- 13.3.3 MFC design and architecture -- 13.4 Bioenergy production from MFC -- 13.4.1 Simple substrate molecules for electricity generation -- 13.4.2 Complex wastewater used for electricity generation -- 13.4.3 Pitfalls and future prospects -- 13.5 Conclusion -- References -- Chapter 14 Case study of nonrefined mustard oil for possible biodiesel extraction: feasibility analysis -- 14.1 Introduction -- 14.2 Materials and methods -- 14.2.1 Catalyst preparation -- 14.2.2 Collection of nonrefined mustard oil -- 14.2.3 Design of experiment using Taguchi -- 14.2.4 Transesterification -- 14.2.5 Characterization of catalyst -- 14.3 Results and discussion -- 14.3.1 Characterization of catalyst -- 14.3.2 ANOVA and RSM -- 14.3.3 Effect of operating parameters -- 14.4 Conclusion -- References -- Chapter 15 Waste oil to biodiesel -- 15.1 Second-generation feedstock for biodiesel production -- 15.1.1 Used cooking oil -- 15.1.2 Grease -- 15.1.3 Animal fat -- 15.1.4 Soapstock -- 15.1.5 Nonedible oils. , 15.2 Conclusion.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Perovskite. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (458 pages)
    Edition: 1st ed.
    ISBN: 9780128204009
    Series Statement: Woodhead Publishing Series in Composites Science and Engineering Series
    DDC: 549.528
    Language: English
    Note: Intro -- Hybrid Perovskite Composite Materials: Design to Applications -- Copyright -- Contents -- Contributors -- 1 Nano-crystalline perovskite and its applications -- 1.1 Common material structures -- 1.2 Nonstoichiometry in perovskites -- 1.3 Crystallography and chemistry of perovskite structures -- 1.3.1 Size effects -- 1.3.2 Effect of the composition variation from the ideal ABO3 -- 1.3.3 Single perovskite -- 1.3.4 Double perovskite -- 1.4 Nano-structured perovskite level -- 1.5 Applications for nano-perovskites -- 1.6 Conclusion -- References -- 2 Preparation and processing of nanocomposites of all-inorganic lead halide perovskite nanocrystals -- 2.1 Introduction -- 2.2 Nanocomposites based on conventional semiconductor nanocrystals-Brief overview -- 2.3 Fabrication and processing of nanocomposites of all-inorganic perovskite nanocrystals -- 2.3.1 Preparation of silica, titania, zirconia, and siloxane-based perovskite nanocomposites -- 2.3.1.1 Preparation of nanocomposites of LHP NCs/SiO 2 and SiO 2 -related compounds -- 2.3.1.2 Preparation of LHP NCs/titania (TiO 2) composites -- 2.3.1.3 Preparation of LHP NCs/alumina (Al 2 O 3) composites -- 2.3.1.4 Preparation of LHP NCs/zirconia (ZrO 2) composites -- 2.3.1.5 Miscellaneous -- 2.3.2 Preparation of polymer-based perovskite nanocomposites -- 2.3.2.1 Preparation and properties of CsPbX 3 NCs/poly-methyl-methacrylate (PMMA) composites -- 2.3.2.2 Preparation and properties of CsPbX 3 NCs/polystyrene (PS) composites -- 2.3.2.3 Role of polymeric oligomeric silsesquioxane (POSS) in improving properties of CsPbX 3 NCs -- 2.3.3 Nanocomposites of mixed perovskite phases -- 2.3.4 Miscellaneous -- 2.4 Conclusion and future perspectives -- Acknowledgments -- References -- 3 Thin films for planar solar cells of organic-inorganic perovskite composites -- 3.1 Introduction. , 3.1.1 History of perovskite solar cells -- 3.2 Perovskite solar cells: Architecture, evolution, and thin-film synthesis -- 3.2.1 The architecture of PSCs -- 3.2.2 Evolution of PSC -- 3.2.3 Thin film formation -- 3.2.3.1 Vacuum thermal coevaporation -- 3.2.3.2 Layer-by-layer sequential vacuum sublimation -- 3.2.3.3 Vapor deposition by dual-source -- 3.2.3.4 Spin coating -- 3.2.3.5 Spray coating -- 3.2.3.6 Screen printing -- 3.2.4 Thin-films for perovskite solar cells: A case study -- 3.2.4.1 Fundamentals of photovoltaic devices -- 3.2.4.2 Optical and electrical properties of perovskite solar cells -- 3.3 Future scope of perovskite solar cells -- 3.4 Conclusion -- Acknowledgments -- References -- 4 Perovskite-type catalytic materials for water treatment -- 4.1 Introduction -- 4.2 Structure of perovskites -- 4.3 Synthesis methods of perovskites -- 4.3.1 Sol-gel method -- 4.3.2 Coprecipitation method -- 4.3.3 Hydrothermal method -- 4.3.4 Solid-state method -- 4.3.5 Microwave radiation method -- 4.4 Perovskite catalyst for water treatment -- 4.4.1 Process based on advanced oxidation process (AOPs) -- 4.4.1.1 Dye degradation -- 4.4.2 Process based on photocatalysis -- 4.5 Summary and perspective -- Acknowledgments -- References -- 5 Perovskite-based material for sensor applications -- 5.1 Introduction -- 5.2 Synthesis of perovskite materials -- 5.2.1 Solid-state reactions -- 5.2.2 Hydrothermal synthesis -- 5.2.3 Coprecipitation method -- 5.2.4 Sol-gel method -- 5.2.5 Gas phase reaction -- 5.2.6 Microwave synthesis -- 5.2.7 Wet chemical methods -- 5.3 Fabrication of sensors -- 5.3.1 Screen printing -- 5.3.2 Chemical vapor deposition -- 5.3.3 Sol-gel method -- 5.3.4 Spray pyrolysis -- 5.3.5 Physical vapors deposition -- 5.4 Perovskites as sensors -- 5.4.1 Perovskites as temperature sensors. , 5.4.2 Humidity sensors -- 5.4.3 Perovskites as gas sensors -- 5.4.4 Perovskite sensors for explosive species -- 5.5 Conclusions and future outlook -- References -- Further reading -- 6 High-sensitivity piezoelectric perovskites for magnetoelectric composites -- 6.1 Introduction -- 6.2 Historical background of ME coupling -- 6.3 Theoretical background -- 6.3.1 Perovskite oxide -- 6.3.2 Key piezoelectric and magnetostrictive parameters -- 6.3.3 ME effect -- 6.4 Factors influencing performance of ME composites -- 6.4.1 Nature of prominent phases -- 6.4.2 Geometrical configurations -- 6.4.3 Selection criteria for ME composites -- 6.5 Perovskite structure-based ME materials -- 6.5.1 Pb-based composites -- 6.5.2 Green ME composites -- 6.5.2.1 Barium titanate-based ME composites -- 6.5.2.2 Bismuth ferrite-based ME composites -- 6.5.2.3 Potassium niobate-based composites -- 6.6 Applications of ME composites -- 6.6.1 ME nanoparticles in nanomedicine -- 6.6.2 Energy harvesters -- 6.6.3 Magnetic sensors -- 6.7 Future directions -- 6.8 Conclusions -- References -- 7 Spectroscopic parameters of red emitting Eu3 +-doped La2Ba3B4O12 phosphor for display and forensic applicatio ... -- 7.1 Introduction -- 7.2 Synthesis and characterization of prepared phosphor -- 7.2.1 Materials and methods -- 7.2.2 Experimental details -- 7.3 Results and discussion -- 7.3.1 Phase identification and structural refinement -- 7.3.2 FTIR analysis of prepared LBBO:Eu3 + phosphors -- 7.3.3 Morphology -- 7.3.4 PL excitation and emission spectra for LBBO doped with Eu3 + -- 7.3.4.1 PL excitation studies of Eu3 + in LBBO host matrix -- Charge-transfer (CT) transition -- 7.3.4.2 Emission transitions of Eu3 + in LBBO host matrix -- 7.3.4.3 Concentration quenching -- 7.4 Fingerprint detection in different materials -- 7.5 Conclusion -- Acknowledgments. , References -- 8 Perovskite's potential functionality in a composite structure -- 8.1 Introduction -- 8.2 Structure of perovskites -- 8.2.1 Structure of LaCrO3 -- 8.2.2 Structure of LaFeO3 -- 8.3 Methods of synthesis -- 8.3.1 Pechini method -- 8.3.2 Conventional method -- 8.3.3 Citrate method -- 8.3.4 Oxalate method -- 8.3.5 Microwave-aided method -- 8.3.6 Combustion method -- 8.3.7 Sol-gel method -- 8.3.8 Solid-state oxide reaction method -- 8.3.9 Coprecipitation method -- 8.3.10 Solution combustion synthesis (SCS) -- 8.3.11 Polymer precursor method -- 8.4 Applications of perovskite oxides -- 8.5 Conclusion -- References -- 9 Compositional engineering of perovskite materials -- 9.1 Introduction -- 9.2 Synthesis methods for the compositional engineering -- 9.2.1 Solid-state reaction -- 9.2.2 Wet chemical methods -- 9.2.2.1 The chemical coprecipitation methods include two typical strategies -- 9.2.2.2 The sol-gel method -- 9.2.3 Hydrothermal synthesis method -- 9.3 Compositional engineering in BiFeO3-based perovskites -- 9.4 Compositional engineering in bismuth-layered perovskites -- 9.5 Conclusion -- Acknowledgments -- References -- 10 Development of hybrid organic-inorganic perovskite (HOIP) composites -- 10.1 Introduction -- 10.2 Types of HOIPs -- 10.2.1 Development of ferroelectric HOIPs -- 10.2.1.1 1D-HOIPs -- 10.2.1.2 2D-HOIPs -- 10.2.1.3 3D-HOIPs -- 10.2.2 Development of dielectric HOIPs -- 10.2.3 Development of piezoelectric HOIPs -- 10.2.4 Development of pyroelectric HOIPs -- 10.3 Development in electrochemical and photovoltaic behavior of HOIPs -- 10.4 Conclusions -- References -- Further reading -- 11 Progress in efficiency and stability of hybrid perovskite photovoltaic devices in high reactive environments -- 11.1 Introduction -- 11.2 Progress in efficiency -- 11.3 Progress in stability. , 11.3.1 Factors affecting stability -- 11.3.1.1 Effect of oxygen and moisture -- 11.3.1.2 Effect of Temperature -- 11.3.1.3 Effect of illumination -- 11.3.1.4 Other factors -- 11.4 Summary and future scope -- References -- 12 Enhancement of photoluminescence/phosphorescence properties of Eu3 +-doped Gd2Zr2O7 phosphor -- 12.1 Introduction -- 12.2 Experimental -- 12.3 Results and discussion -- 12.3.1 X-ray diffraction analysis -- 12.3.2 SEM images of phosphor -- 12.3.3 Photoluminescence studies of pure and Eu3 +-doped GZO phosphor -- 12.4 PL studies of Eu3 +-doped GZO phosphor -- 12.4.1 CIE coordinate -- 12.5 Conclusion -- Acknowledgments -- References -- 13 Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications -- 13.1 Introduction and general features -- 13.2 Perovskite and perovskite structure -- 13.3 Three-dimensional organic-inorganic hybrid halide perovskites -- 13.3.1 Gold Schmidt's and tolerance factor concept -- 13.4 Low-dimensional organic-inorganic hybrid layered halide perovskites -- 13.4.1 Dimensionality -- 13.4.2 Two-dimensional perovskite system -- 13.5 Double perovskite structure -- 13.6 Hybrid halide double perovskite -- 13.7 Applications -- 13.7.1 Electronic applications (photovoltaic and solar cells) -- 13.7.2 Optoelectronic applications -- 13.7.2.1 Light-emitting diode -- 13.7.2.2 Lasers -- 13.7.2.3 Photodetectors -- 13.7.2.4 Water-splitting -- 13.7.2.5 Field effect transistors -- 13.8 Conclusion -- 13.9 Vision for the future -- References -- 14 Hybrid perovskite photovoltaic devices: Architecture and fabrication methods based on solution-processed metal oxide tr ... -- 14.1 Introduction -- 14.1.1 Electron transport layer (ETL) -- 14.1.2 Hole transport layer (HTL) -- 14.2 Conclusion -- Acknowledgments -- Conflict of interest -- References. , 15 Composite perovskite-based material for chemical-looping steam methane reforming to hydrogen and syngas.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Waste disposal ; Waste Management/Waste Technology ; Chemical engineering ; Environmental management ; Waste management.
    Description / Table of Contents: 1. Solution and Challenges in recycling waste cathode-ray tube -- 2. Reconfigurable recycling systems of e-waste -- 3. An Economic Assessment of Present and Future Electronic Waste Streams: Japan’s Experience -- 4. Recent technologies in electronic waste management -- 5. Recycling challenges for electronic consumer products to e-waste: A developing countries perspective -- 6. Chemical recycling of electronic waste for clean fuel production -- 7. Management of electrical and electronic equipment in European Union countries: a comparison -- 8. E-waste management from macroscopic to microscopic scale -- 9. Recycling processes for the recovery of metal from e-waste of the LED industry -- 10. E-waste management and the conservation of geochemical scarce resources -- 11. Sustainable electronic waste management: Implications on environmental and human health -- 12. E-waste and their implications on the environmental and human health
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XIII, 235 p. 57 illus., 29 illus. in color)
    Edition: 1st ed. 2020
    ISBN: 9783030141844
    Series Statement: Environmental Chemistry for a Sustainable World 33
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...