GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Nanotechnology-Health aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (446 pages)
    Edition: 1st ed.
    ISBN: 9780323951722
    DDC: 615.1
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Organic compounds-Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (590 pages)
    Edition: 1st ed.
    ISBN: 9780323996440
    DDC: 620.1180286
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Environmental engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (300 pages)
    Edition: 1st ed.
    ISBN: 9780128219010
    DDC: 541.39
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Inorganic Synthesis -- Copyright -- Contents -- Contributors -- Chapter 1: Microwave-assisted green synthesis of inorganic nanomaterials -- Description -- Key features -- 1. Introduction -- 2. Technical aspects of microwave technique -- 2.1. Principles and heating mechanism of microwave method -- 2.2. Green solvents for microwave reactions -- 2.3. Microwave versus conventional synthesis -- 2.4. Microwave instrumentation -- 2.5. Advantages and limitations -- 3. MW-assisted green synthesis of inorganic nanomaterials -- 3.1. Metallic nanostructured materials -- 3.2. Metal oxides nanostructured materials -- 3.3. Metal chalcogenides nanostructured materials -- 3.4. Quantum dot nanostructured materials -- 4. Conclusions and future aspects -- 4.1. Challenges and scope to further study -- References -- Chapter 2: Green synthesis of inorganic nanoparticles using microemulsion methods -- Description -- Key features -- 1. Introduction -- 2. Fundamental aspects of microemulsion synthesis -- 2.1. Microemulsion and types -- 2.2. Micelles, types, and formation mechanism -- 2.3. Hydrophilic-lipophilic balance number -- 2.4. Surfactants and types -- 2.5. Advantages and limitations of microemulsion synthesis of nanomaterials -- 3. Microemulsion-assisted green synthesis of inorganic nanostructured materials -- 3.1. General mechanism microemulsion method for nanomaterial synthesis -- 3.2. Preparation of metallic and bimetallic nanoparticles -- 3.3. Metal oxide synthesis by microemulsion -- 3.4. Synthesis of metal chalcogenide nanostructured materials -- 3.5. Synthesis of inorganic quantum dots -- 4. Conclusions, challenges, and scope to further study -- References -- Chapter 3: Synthesis of inorganic nanomaterials using microorganisms -- 1. Introduction. , 2. Green approach for synthesis of nanoparticles -- 3. General mechanisms of biosynthesis -- 4. Optimization of nanoparticles biosynthesis -- 4.1. Effect of the temperature -- 4.2. Effect of pH -- 4.3. Effect of metal precursor concentration -- 4.4. Effect of culture medium composition -- 4.5. Effect of biomass quantity and age -- 4.6. Synthesis time -- 5. Biosynthesis of metal oxide nanoparticles -- 5.1. Bacteria-mediated synthesis -- 5.2. Fungi-mediated synthesis -- 5.3. Yeast-mediated synthesis -- 5.4. Algae- and viruses-mediated synthesis -- 6. Biosynthesis of metal chalcogenide nanoparticles -- 7. Final considerations -- References -- Chapter 4: Challenge and perspectives for inorganic green synthesis pathways -- 1. Introduction -- 2. Synthesis methods -- 2.1. Physical synthesis -- 2.1.1. Advantages -- 2.1.2. Inconvenient -- 2.2. Chemical synthesis -- 2.2.1. Advantages -- 2.2.2. Inconvenient -- 2.3. Green synthesis of inorganic nanomaterials and application -- 3. Challenge and perspectives -- 4. Conclusion -- References -- Chapter 5: Synthesis of inorganic nanomaterials using carbohydrates -- 1. Introduction -- 1.1. Types of nanomaterials -- 1.2. Approaches for the synthesis of inorganic nanomaterials -- 1.3. Characterization of inorganic nanomaterials -- 1.4. What are carbohydrates? -- 1.4.1. Types of carbohydrates -- Monosaccharides -- Oligosaccharides -- Polysaccharides -- 2. Synthesis of inorganic nanomaterials using carbohydrates -- 2.1. Synthesis of metal nanomaterials using carbohydrates -- 2.2. Synthesis of metal oxide-based nanomaterials using carbohydrates -- 2.3. Synthesis of nanomaterials using polysaccharides extracted from fungi and plant -- 3. The advantages and disadvantages of inorganic nanomaterials -- 4. Conclusion and future scope -- References -- Chapter 6: Fundamentals for material and nanomaterial synthesis. , 1. Introduction -- 2. Fundamental synthesis for materials -- 2.1. Solid-state synthesis -- 2.2. Chemical vapor transport -- 2.3. Sol-gel process -- 2.4. Melt growth (MG) method -- 2.5. Chemical vapor deposition -- 2.6. Laser ablation methods -- 2.7. Sputtering method -- 2.8. Molecular beam epitaxy method -- 3. Fundamental synthesis for nanomaterials -- 3.1. Top-down and bottom-up approaches -- 3.1.1. Ball milling (BL) synthesis process -- 3.1.2. Electron beam lithography -- 3.1.3. Inert gas condensation synthesis method -- 3.1.4. Physical vapor deposition methods -- 3.1.5. Laser pyrolysis methods -- 3.2. Chemical synthesis methods -- 3.2.1. Sol-gel method -- 3.2.2. Chemical vapor deposition method -- 3.2.3. Hydrothermal synthesis -- 3.2.4. Polyol process -- 3.2.5. Microemulsion technique -- 3.2.6. Microwave-assisted (MA) synthesis -- 3.3. Bio-assisted (B-A) methods -- 4. Conclusion -- References -- Chapter 7: Bioinspired synthesis of inorganic nanomaterials -- 1. Introduction -- 1.1. Nanomaterials and current limitations -- 1.2. Bioinspired synthesis -- 2. General mechanism of interaction -- 3. Bioinspired synthesis of inorganic nanomaterials -- 3.1. Microorganisms-mediated synthesis -- 3.2. Plant-mediated synthesis -- 3.2.1. Root extract assisted synthesis -- 3.2.2. Leaves extract assisted synthesis -- 3.2.3. Shoot-mediated synthesis -- 3.3. Protein templated synthesis -- 3.4. DNA-templated synthesis -- 3.5. Butterfly wing scales-templated synthesis -- 4. Applications of bioinspired nanomaterials -- 5. Conclusions -- References -- Chapter 8: Polysaccharides for inorganic nanomaterials synthesis -- 1. Introduction -- 2. Polysaccharides -- 2.1. Types of polysaccharides -- 2.1.1. Cellulose -- 2.1.2. Starch -- 2.1.3. Chitin -- 2.1.4. Chitosan -- 2.1.5. Properties of polysaccharides for bioapplications -- 3. Nanomaterials -- 3.1. Types of nanomaterials. , 3.1.1. Organic nanomaterials -- Carbon nanotubes -- Graphene -- Fullerenes -- 3.1.2. Inorganic nanomaterials -- Magnetic nanoparticles -- Metal nanoparticles -- Metal oxide nanoparticles -- Luminescent inorganic nanoparticles -- 3.2. Health effects of nanomaterials -- 4. Polysaccharide-based nanomaterials -- 4.1. Cellulose nanomaterials -- 4.1.1. Preparation of cellulose nanomaterials -- 4.1.2. Structure of cellulose nanomaterials -- 4.2. Chitin nanomaterials -- 4.2.1. Preparation of chitin nanomaterials -- 4.2.2. Structure and properties of chitin nanomaterials -- 4.3. Starch nanomaterials -- 4.3.1. Preparation of starch nanomaterials -- 4.3.2. Structure and properties of starch nanomaterials -- 5. Preparation of polysaccharide-based inorganic nanomaterials -- 5.1. Bulk nanocomposites -- 5.2. Composite nanoparticles -- 6. Applications of polysaccharide-based inorganic nanomaterials -- 6.1. Biotechnological applications -- 6.1.1. Bioseparation -- 6.1.2. Biolabeling and biosensing -- 6.1.3. Antimicrobial applications -- 6.2. Biomedical applications -- 6.2.1. Drug delivery -- 6.2.2. Digital imaging -- 6.2.3. Cancer treatment -- 6.3. Agricultural applications -- 7. Characterization of polysaccharide-based nanomaterials -- 7.1. Spectroscopy -- 7.1.1. Infrared (IR) spectroscopy -- 7.1.2. Surface-enhanced Raman scattering (SERS) -- 7.1.3. UV-visible absorbance spectroscopy -- 7.2. Microscopy -- 7.2.1. Scanning electron microscopy (SEM) -- 7.2.2. Transmission electron microscopy (TEM) -- 7.3. X-ray methods -- 7.4. Thermal analysis -- 8. Future prospects -- 9. Concluding remarks -- References -- Chapter 9: Supercritical fluids for inorganic nanomaterials synthesis -- 1. Introduction -- 2. The supercritical fluid as a substitute technology -- 2.1. What is supercritical fluid? -- 2.2. Supercritical antisolvent precipitation. , 2.3. Supercritical-assisted atomization -- 2.4. Sol-gel drying method -- 3. Synthesis in supercritical fluids -- 3.1. Route of supercritical fluids containing nanomaterials synthesis -- 3.2. Sole supercritical fluid -- 3.3. Mixed supercritical fluid -- 4. Theory of the synthesis of supercritical fluids containing nanomaterials -- 4.1. Supercritical fluids working process -- 4.2. Origin of nanoparticles -- 4.3. The rapid expansion of supercritical solutions -- 5. Conclusion -- References -- Chapter 10: Green synthesized zinc oxide nanomaterials and its therapeutic applications -- 1. Introduction -- 2. Green synthesis -- 3. ZnO NPs characterization -- 4. ZnO NPs synthesis by plant extracts -- 5. ZnO NPs synthesis by bacteria and actinomycetes -- 6. ZnO NPs synthesis by algae -- 7. ZnO NPs synthesis by fungi -- 8. NPs synthesis by virus -- 9. ZnO NPs synthesis with alternative green sources -- 10. Therapeutic applications -- 11. Conclusions -- References -- Chapter 11: Sonochemical synthesis of inorganic nanomaterials -- 1. Background -- 2. Inorganic nanomaterials in sonochemical synthesis -- 3. Applications -- 4. Final comments -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Solvents-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (412 pages)
    Edition: 1st ed.
    ISBN: 9780128173879
    DDC: 541.3482
    Language: English
    Note: Front Cover -- Green Sustainable Process for Chemical and Environmental Engineering and Science -- Copyright -- Contents -- Contributors -- Chapter 1: Conversion of biomass to chemicals using ionic liquids -- 1. Introduction -- 2. Biomass as a renewable resource of chemicals -- 2.1. Interaction among biomass components -- 2.2. Pretreatment of lignocellulosic biomass using ionic liquids -- 2.3. Lignocellulosic biomass conversion to various chemicals -- 3. Platform chemicals from lignocellulosic biomass -- 3.1. 5-HMF and EMF from lignocellulosic biomass -- 3.2. Levulinic acid from lignocellulosic biomass -- 4. Ionic liquids: Significant in conversion of lignocellulose to platform chemicals -- 4.1. Biomass conversion to chemicals using acidic ILs -- 5. Conversion of biomass to 5-HMF and EMF using ILs -- 6. LA from lignocellulosic biomass -- 7. Effects of ILs properties on conversion of cellulose/lignocellulose to LA -- 8. Summary -- References -- Chapter 2: Ionic liquids for enzyme-catalyzed production of biodiesel -- 1. Introduction -- 2. Influence of ionic liquid cation in biocatalyzed biodiesel production -- 2.1. Imidazolium-based ionic liquids -- 2.2. Other cations -- 3. Impact of ionic liquid anion in biocatalyzed biodiesel production -- 4. Biocatalysts employed in biodiesel production with ionic liquids -- 5. Substrates and acyl acceptors for biocatalyzed biodiesel production with ionic liquids -- 6. Operation temperature for biocatalyzed biodiesel production with ionic liquids -- 7. Conclusions -- References -- Chapter 3: Organic synthesis on ionic liquid support: A new strategy for the liquid-phase organic synthesis (LPOS) -- 1. Introduction -- 2. Synthesis of small molecules on ionic liquid support -- 3. Ionic liquid-supported reagents for organic synthesis -- 4. Ionic liquid-supported catalysts for organic synthesis. , 5. Conclusion and outllook -- References -- Further reading -- Chapter 4: Separation of volatile organic compounds by using immobilized ionic liquids -- 1. Introduction -- 2. Ionic liquids for the separation of organic compounds -- 3. Separation of organic volatile compounds by IL-based membranes -- 3.1. Supported ionic liquid membranes -- 3.1.1. Flat sheet-supported ionic liquid membranes -- 3.2. Hollow fiber-supported ionic liquid membranes -- 3.3. Anodic aluminum oxide/ionic liquid membranes -- 4. Conclusions -- References -- Chapter 5: Deep eutectic solvents -- 1. Introduction -- 2. Properties and characteristics of DES -- 3. Synthesis of DES -- 4. Application of DES in sample preparation -- 4.1. Food analysis -- 4.2. Environmental analysis -- 4.3. Biological analysis -- 5. Conclusions and future trends -- References -- Further reading -- Chapter 6: Ionic liquids as scavenger -- 1. Introduction -- 1.1. Solid- and solution-phase chemistry -- 1.2. Scavenger properties and mechanism -- 1.3. Ionic liquids as scavengers and their properties -- 2. Task-specific ionic liquids as scavenger -- 2.1. Amino-functionalized ionic liquids as scavenger -- 2.2. Diol-functionalized ionic liquid as scavenger -- 2.3. Ionic liquids functionalized with Michael acceptor as scavenger -- 2.4. Si-supported sulfonic acid-functionalized ionic liquid as scavenger -- 2.5. Carboxyl-functionalized ionic liquids as scavenger -- 2.6. Aldehyde-functionalized ionic liquids as scavenger -- 2.7. Azide-functionalized ionic liquid as scavenger -- 2.8. Amino acid-functionalized ionic liquid as scavenger -- 2.9. Chlorosalicylaldehyde-functionalized ionic liquids as scavenger -- 3. Conclusion -- References -- Chapter 7: Recent developments in ionic liquid-based electrolytes for energy storage supercapacitors and rechargeable b -- 1. Introduction. , 2. Recent developments in ionic liquid-based supercapacitors and batteries -- 3. Development of porous electrodes for ionic liquid electrolytes -- 4. Development of high operating temperature supercapacitors and batteries -- 5. Effect of cationic or anionic species on the electrochemical performance of ionic liquids -- 6. Conclusion -- References -- Chapter 8: Recent insights on solubility and stability of biomolecules in ionic liquid -- 1. Introduction -- 2. Available resources on properties of ionic liquids -- 3. Advantages of ILs for biomolecule-based applications -- 3.1. Biocompatibility and biodegrability of ILs -- 4. Biomolecules solubility and stability in ILs -- 4.1. Nucleic acids in ILs -- 4.2. Carbohydrates in ILs -- 4.3. Proteins in ILs -- 5. Conclusion -- References -- Chapter 9: Ionic liquid-based membranes for water softening -- 1. Introduction -- 1.1. Ionic liquids (ILs) -- 1.2. Water purification: Challenges and perspectives -- 2. Liquid membrane -- 3. Bulk membranes based on ionic liquids -- 3.1. Extraction of phenols -- 3.2. Extraction of metal ions -- 4. Emulsion liquid membranes -- 5. Supported liquid membranes (SLMs) -- 5.1. Flat sheet liquid membrane -- 5.1.1. IL-SLM as extracting agents for heavy metal ions -- 5.1.2. Extraction of endosulfan -- 5.1.3. Separation of volatile organic compounds by ILs -- 5.1.4. Removal of phenolic compounds from water -- 5.1.5. Separation of organic liquids -- 5.2. Hollow fiber-supported IL membrane -- 5.2.1. Extraction of phenols -- 5.2.2. Extraction of metal ions -- 6. Polymer inclusion membranes (PIMs) -- 6.1. Extraction of metal ions -- 6.2. Extraction of antibiotics -- 6.3. Extraction of organic molecules -- 7. Conclusions -- References -- Chapter 10: Ionic liquids in gas sensors and biosensors -- 1. Introduction -- 2. Properties of ILs -- 3. Transducers utilized in IL-based sensors. , 3.1. Electrochemical transducers -- 3.2. Mass-sensing transducers -- 3.3. Optical transducers -- 3.4. IL-modified electrodes -- 3.5. Multitransduction modes -- 4. Immobilization techniques -- 5. Applications of IL-based sensors and biosensors -- 6. Future prospects -- 6.1. Electronic nose instruments -- 6.2. Ion Jelly ionic liquids -- 6.3. 3-D printing technology -- 7. Conclusions -- References -- Further reading -- Chapter 11: Ionic liquids as gas sensors and biosensors -- 1. Introduction -- 2. Ionic liquid-based electrochemical biosensors -- 2.1. Ionic liquid-based carbon nanomaterial biosensors -- 2.2. Ionic liquid based biosensor/metal nanomaterials -- 2.3. Gel-based biosensors -- 3. Electrochemical gas sensors -- 3.1. Electrochemical gas sensor-Oxygen (O2) sensors -- 3.2. Electrochemical gas sensor-Nitrogen oxide (NOx) -- 4. Optical gas sensors -- 4.1. Optical oxygen gas sensors -- 4.2. Optical carbon dioxide gas sensors -- 5. Other forms of gas sensors and applications of ionic liquids -- 5.1. Gas seniors-semiconducting metal oxides -- 5.2. Carbon-IL composite gas sensors -- 6. Conclusion -- References -- Further reading -- Chapter 12: Imidazolium-based room temperature ionic liquids for electrochemical reduction of carbon dioxide to carbon mo ... -- 1. Introduction -- 2. Mechanistic aspects -- 2.1. Formation of imidazolium-CO2 adducts -- 2.2. Deactivation of imidazolium cation during CO2 ERR -- 2.3. Structural transitions of imidazolium ILs at electrode-electrolyte interface -- 3. Role of imidazolium ILs in homogeneous reduction of CO2 -- 4. Role of imidazolium ILs in heterogeneous reduction of CO2 -- 4.1. With noble metal-based electrodes -- 4.2. With nonnoble metal-based electrodes -- 4.3. With polymers -- 4.4. With carbon-based electrodes -- 5. Conclusion -- References. , Chapter 13: Ionic liquid based electrochemical sensors and their applications -- 1. Introduction -- 2. History of ionic liquids -- 3. Electrochemical properties of ionic liquids -- 4. Ionic liquid based electrochemical sensors -- 5. Ionic liquid applications in electrochemical sensors -- 6. Conclusions -- References -- Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (426 pages)
    Edition: 1st ed.
    ISBN: 9780323998178
    DDC: 621.312424
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Environmental engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (302 pages)
    Edition: 1st ed.
    ISBN: 9780128218976
    DDC: 543
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Analytical Techniques for Environmental a... -- Copyright -- Contents -- Contributors -- Chapter 1: Conventional and advanced techniques of wastewater monitoring and treatment -- 1. Introduction -- 2. Water pollutants: Origin and consequences -- 3. Wastewater analysis -- 3.1. Lab-based analytical methods -- 3.2. Field monitoring techniques -- 3.2.1. Biosensors -- Biosensors for detection of organic contaminants in wastewater -- Biosensors for detection of inorganic contaminants in water -- Biosensors for detection of microorganisms in water -- 3.2.2. Nanoparticle-assisted sensing platform -- 3.2.3. Paper-based microfluidics sensors -- 3.2.4. Soft sensors -- 3.3. Wireless sensor networks -- 4. Wastewater treatment -- 4.1. Conventional wastewater treatment methods -- 4.1.1. Primary treatment -- 4.1.2. Secondary treatment -- Aerobic treatment -- Anaerobic treatment -- Activated sludge process -- Biological filters -- Vermifiltration -- Rotating biological contractors -- Phytoremediation -- Microbial fuel cells -- 4.1.3. Tertiary treatment -- 4.2. Advanced wastewater treatment methods -- 4.2.1. Membrane filtration -- 4.2.2. Advanced oxidation processes -- 4.2.3. UV irradiation -- 4.2.4. Other advanced methods -- 4.3. Commercialized wastewater treatments -- 5. Future perspectives -- References -- Chapter 2: UV-vis spectrophotometry for environmental and industrial analysis -- 1. Introduction -- 2. The electromagnetic spectrum -- 2.1. Electronic photophysical process -- 3. Limitations of Beer-Lambert Law -- 4. Importance of UV-vis spectroscopy for analysis -- 4.1. Quantitative analysis -- 4.2. Qualitative analysis -- 4.3. UV-vis spectrophotometry for environmental analysis -- 5. Water analysis -- 6. Polymer analysis -- 7. Microcarbon analysis -- 8. Dye analysis. , 8.1. Measurement of change in coloration -- 8.2. Removal of metal salts -- 8.3. Regulations in environmental control -- 8.4. Wastewater fingerprinting -- 8.5. Colored ink -- 8.6. UV-vis spectrophotometry for industrial analysis -- 8.6.1. Presence of colorants -- 8.6.2. Removal of colorants -- 8.7. Presence of organic content -- 8.8. Presence of natural products -- 8.9. Petrochemical industry -- 8.10. Waste management -- 9. Conclusion -- References -- Chapter 3: Chemical oxygen demand and biochemical oxygen demand -- 1. Introduction -- 2. Redox chemistry in water -- 3. Oxygen demand [1, 2] -- 4. Biological oxygen demand -- 5. Analysis of biochemical oxygen demand -- 5.1. Standard method -- 5.1.1. Winkler's method [6] -- 5.2. Technological advancement in standard methods -- 5.3. BOD methods for rapid determination of results -- 6. Chemical oxygen demand (COD) -- 6.1. Chemical reactions involved in COD determination [16] -- 6.2. Modification of conventional COD method -- 6.3. Mercury free methods -- 6.4. Electrochemical and photocatalytic methods (lesser chemical use) -- 7. Conclusion -- References -- Chapter 4: Soil and sediment analysis -- 1. Introduction -- 2. Methods for analysis of organic compounds -- 2.1. Pharmaceuticals -- 2.2. Phenols-alkylphenols and bisphenol A -- 2.3. Polycyclic aromatic hydrocarbons -- 2.4. Phthalates -- 2.5. Organometallic and organometalloid compounds -- 3. Microplastics -- 4. Quality assurance -- Funding -- References -- Chapter 5: Liquid chromatography-mass spectrometry techniques for environmental analysis -- 1. Introduction -- 2. Advances in extraction techniques of environmental samples for LC-MS -- 2.1. Microextraction techniques -- 2.2. Extraction techniques involving nanomaterials -- 2.3. Extraction techniques involving ionic liquids -- 3. Advances in liquid chromatography instrumentation. , 4. Advances in mass spectrometry detection -- 5. Applications of LC/MS for environmental analysis -- 6. Conclusions -- References -- Chapter 6: Green analytical chemistry for food industries -- 1. Introduction -- 2. Analytical detection -- 2.1. Qualitative methods -- 2.2. Quantitative methods -- 3. Emerging extraction technologies -- 3.1. Supercritical fluid extraction -- 3.2. Pressurized liquid extraction -- 3.3. Microwave-assisted extraction -- 3.4. Ultrasound-assisted extraction -- 4. Miniaturization of online emerging extraction techniques with analytical detection: Current trends in the use of SFE a ... -- 4.1. Sample preparation: Extraction vessel packaging -- 4.2. Extraction mode -- 4.2.1. Selection of the mobile phase -- 4.3. Separation and detection of analytes -- 5. Conclusion -- References -- Chapter 7: Immunoassays applications -- 1. Introduction -- 2. Conventional vs microscale immunoassay sensors -- 3. Substrates -- 3.1. Silicon -- 3.2. Glass -- 3.3. Polymers -- 3.4. Paper -- 3.5. Hybrid -- 4. Fluid transport mechanisms -- 4.1. Active -- 4.2. Passive -- 5. Detection methodologies -- 5.1. Colorimetric -- 5.2. Fluorescence -- 5.3. Surface plasmon resonance -- 5.4. Electrochemical -- 5.5. Mechanical -- 6. Conclusions and outlook -- References -- Chapter 8: High-performance liquid chromatographic techniques for determination of organophosphate pesticides in complex matr -- 1. Introduction -- 2. Environmental fate of pesticides -- 3. Analytical methods used for pesticides determination -- 4. High-performance liquid chromatography -- 4.1. Types of HPLC -- 4.1.1. Normal-phase HPLC -- 4.1.2. Reverse-phase HPLC -- 4.2. HPLC column -- 4.3. Mode of elution -- 4.3.1. Isocratic HPLC -- 4.3.2. Gradient HPLC -- 4.4. Detectors used for the analysis of organophosphate pesticides -- 5. Sample preparation for HPLC analysis of organophosphate pesticides. , 6. Detection and quantification of organophosphate pesticides from complex matrices using high-performance liquid chromat ... -- References -- Chapter 9: Application of the GC/MS technique in environmental analytics: Case of the essential oils -- 1. Introduction -- 2. GC/MS as a modern technique for analysis of essential oils -- 3. Practical application of the polar column in the analysis of essential oils -- 4. Conclusion -- References -- Chapter 10: Remote sensing for environmental analysis: Basic concepts and setup -- 1. Introduction -- 2. Practical examples -- 2.1. Improving environmental assessments through remote sensing -- 3. Key concepts to/in remote sensing -- 4. Historical background of remote sensing -- 4.1. Historical beginning -- 4.2. Remote sensing to environment applications -- 4.2.1. Hyperspectral imaging -- 4.2.2. Field spectrometry -- 4.2.3. Light detection and ranging (LiDAR) -- 5. Remote sensing sensors -- 5.1. Imaging sensors -- 5.2. Non-imaging sensors -- 6. Quality assurance and quality control (QA/QC) in environmental monitoring by remote sensing -- 7. Perspectives and conclusion -- References -- Chapter 11: Materials science and lab-on-a-chip for environmental and industrial analysis -- 1. Introduction -- 2. Lab-on-a-chip concept and components -- 3. Materials science on LOC technology -- 4. Environmental analysis and pollutant monitoring -- 5. Autonomous LOC prototype -- 6. Challenges and future prospects of LOC technology -- 7. Conclusion -- References -- Chapter 12: Destructive and nondestructive techniques of analyses of biofuel characterization and thermal valorization -- 1. Introduction -- 2. Materials preparation -- 2.1. Thermal densification processes -- 2.2. Mechanical densification processes -- 3. Destructive analyses for materials characterization -- 3.1. Generalities on destructive methods. , 3.2. Destructive methods in solid biofuel characterization -- 3.2.1. Thermogravimetry analysis (ATG) -- 3.2.2. High heating value determination -- 3.2.3. Ultimate analysis -- 4. Nondestructive methods for material characterization -- 4.1. Generalities -- 4.2. Nondestructive methods in solid biofuel characterization -- 4.2.1. Inductively coupled plasma atomic emission spectroscopy technique -- 4.2.2. Gaseous emission analysis using TESTO equipment -- 4.2.3. Particulate matter (PM) measurements -- 4.2.4. Bottom ash characterization and measurements -- References -- Chapter 13: Application of nanoparticles as a chemical sensor for analysis of environmental samples -- 1. Introduction -- 2. Synthesis of nanoparticles (NPs) -- 2.1. Platinum nanoparticles (PtNPs) -- 2.2. Gold nanoparticles (AuNPs) -- 2.3. Silver nanoparticles (AgNPs) -- 2.4. Copper nanoparticles (CuNPs) -- 2.5. Silica nanoparticles (SiNPs) -- 2.6. Magnetic nanoparticles (MNPs) -- 2.7. Carbon nanotubes (CNTs) -- 2.8. Graphene quantum dots (GQDs) -- 3. Characterization of nanoparticles -- 4. Properties of nanoparticles -- 4.1. Surface plasmon resonance (SPR) and color of NPs -- 4.2. Surface area -- 4.3. Magnetic properties -- 4.4. Electronic properties -- 5. Different class of chemical substances -- 5.1. Heavy metals -- 5.1.1. Essential metals -- 5.1.2. Toxic metals -- 5.2. Pesticides and fungicides -- 5.3. Aromatic and VOC's compounds -- 5.4. Surfactants -- 5.5. Other chemical substances -- 6. Analytical techniques for detection of chemical substance in environmental samples -- 6.1. Colorimetric sensing -- 6.2. Fluorescence sensing -- 6.3. Electrochemical sensing -- 6.4. Surface-enhanced Raman spectroscopic (SERS) sensing -- 7. Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Organic compounds-Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (412 pages)
    Edition: 1st ed.
    ISBN: 9780128198490
    DDC: 547/.2
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Organic Synthesis in Water and Supercriti... -- Copyright -- Contents -- Contributors -- Chapter 1: Polymer synthesis in water and supercritical water -- 1. Introduction -- 1.1. Water in industries -- 1.2. Supercritical fluids -- 1.3. Properties of water and supercritical water -- 2. Polymerization in water medium -- 2.1. Emulsion polymerization -- 2.2. Photoactivated polymerization -- 2.3. Dispersion polymerization -- 2.4. Controlled/``living´´ radical polymerization -- 2.5. Radical polymerization -- 2.6. Oxidative polymerization -- 2.7. Solution polymerization -- 2.8. Enzyme-catalyzed polymerization -- 3. Supercritical water in polymer technology -- 3.1. Supercritical water in lignocellulosic polymers -- 3.1.1. Cellulose -- 3.1.2. Hemicellulose -- 4. Conclusion -- Acknowledgment -- References -- Chapter 2: Ring-opening reactions in water -- 1. N-nucleophiles -- 1.1. Aliphatic and aromatic amines -- 1.1.1. Racemic synthesis of β-amino alcohols -- 1.1.2. Enantioselective synthesis of β-amino alcohols -- 1.2. Azidolysis -- 2. O-nucleophiles -- 3. S-nucleophile -- 4. C-nucleophiles -- 5. Se-nucleophile -- 6. H-nucleophiles -- References -- Chapter 3: Cycloaddition reactions in water -- 1. Introduction -- 2. ``In-water´´ cycloaddition reactions -- 2.1. [4+2] Cycloaddition (Diels-Alder) reactions -- 2.2. Hydrophobicity effect on rate enhancement in water -- 2.2.1. Structure facilitated hydrophobic effect -- 2.3. Hydrogen-bonding effect on rate enhancement -- 2.4. Endo- vs exo-selectivity in intermolecular D-A reactions -- 2.5. Inverse electron demand D-A reactions in water -- 2.6. Asymmetric Diels-Alder reactions in water -- 2.7. Application to the total synthesis of natural products -- 2.8. Intramolecular Diels-Alder reactions in water. , 2.9. Aqueous intramolecular D-A reaction in the total synthesis -- 2.10. [3+2] Cycloaddition reactions in water -- 2.11. [4+3] Cycloaddition reaction -- 2.12. [2+2+2] Cycloadditions -- 2.13. [5+2] Cycloadditions -- 3. Cycloaddition reactions ``on-water´´ -- 4. Concluding remarks -- Acknowledgments -- References -- Chapter 4: Hydrogenation reactions in water -- 1. Introduction -- 2. Types of hydrogenation -- 2.1. Catalytic hydrogenation -- 2.2. Transfer hydrogenation -- 2.3. Asymmetric hydrogenation -- 2.4. Asymmetric transfer hydrogenation -- 2.5. Electrocatalytic hydrogenation -- 2.6. Selective hydrogenation -- 2.6.1. Chemoselective hydrogenation -- 2.6.2. Diastereoselective hydrogenation -- 2.6.3. Regioselective hydrogenation -- 2.7. Other hydrogenation -- 3. Water as hydrogen donor -- 3.1. Synthesis of aliphatic compounds -- 3.2. Synthesis of aromatic compounds -- 3.3. Synthesis of carbonyl compounds -- 3.4. Synthesis of alcohols, ethers, sugars, nitro and nitril compounds -- 3.5. Synthesis of bio-oils, fossil fuel, and cellulose -- 4. Water as solvent -- 4.1. Synthesis of aliphatic compounds -- 4.2. Synthesis of aromatic compounds -- 4.3. Synthesis of carbonyl compounds -- 4.4. Synthesis of alcohols, ethers, sugars, nitro, and nitril compounds -- 5. Conclusion -- References -- Chapter 5: Magnetically separable nanocatalyzed synthesis of bioactive heterocycles in water -- 1. Introduction -- 2. Synthesis of nitrogen-containing heterocycles -- 2.1. Synthesis of N-substituted pyrroles -- 2.2. Synthesis of 1,4-dihydropyridines -- 2.3. Synthesis of hexahydroquinoline carboxylates -- 2.4. Synthesis of quinolines -- 2.5. Synthesis of acridine-1,8(2H,5H)-diones -- 2.6. Synthesis of benzo[d]imidazoles -- 2.7. Synthesis of imidazo[1,2-a]pyridines -- 2.8. Synthesis of quinoxalines -- 2.9. Synthesis of 1,2,3-triazoles. , 2.10. Synthesis of pyrimido[4,5-b]quinoline and indeno fused pyrido[2,3-d]pyrimidines -- 2.11. Synthesis of pyrido[2,3-d:6,5-d]dipyrimidines -- 2.12. Synthesis of spiropyrazolo pyrimidines -- 2.13. Synthesis of spiro[indoline-3,5-pyrido[2,3-d]pyrimidine] derivatives -- 2.14. Synthesis of 2-amino-tetrahydro-1H-spiro[indoline-3,4-quinoline] derivatives -- 2.15. Synthesis of spiro[indoline-3,2-quinoline] derivatives -- 3. Synthesis of oxygen-containing heterocycles -- 3.1. Synthesis of 4-methylcoumarins -- 3.2. Synthesis of 2-amino-3-cyano-4H-chromenes -- 3.3. Synthesis of 2-amino-4H-chromen-4-yl phosphonates -- 3.4. Synthesis of tetrahydro-1H-xanthen-1-one -- 3.5. Synthesis of pyran annulated scaffolds -- 4. Synthesis of nitrogen as well as oxygen-containing heterocycles -- 4.1. Synthesis of furo[3,4-b]quinoline derivatives -- 4.2. Synthesis of spiro[furo[3,4:5,6]pyrido[2,3-d]pyrimidine-5,3-indoline] derivatives -- 4.3. Synthesis of spirooxindole derivatives -- 4.4. Synthesis of pyrrole fused heterocycles -- 4.5. Synthesis of pyrano[2,3-c]pyrazoles -- 4.6. Synthesis of tetrahydropyrano[3,2-c]quinolin-5-ones -- 4.7. Synthesis of chromeno[1,6]naphthyridines -- 4.8. Synthesis of 1H-naphtho[1,2-e][1,3]oxazine derivatives -- 5. Conclusions -- Acknowledgments -- References -- Chapter 6: Stereoselective organic synthesis in water: Organocatalysis by proline and its derivatives -- 1. Introduction -- 2. Reactions in homogeneous solution or micellar media -- 2.1. Aldol reaction -- 2.2. Knoevenagel condensation -- 2.3. Michael addition -- 2.4. Mannich reaction -- 2.5. Diels-Alder reaction -- 2.6. α-Aminoxylation -- 2.7. Asymmetric hydrogenation -- 3. Reactions catalyzed by solid-supported proline derivatives -- 3.1. Reactions catalyzed by silica-supported proline species -- 3.2. Reactions catalyzed by polymer-supported proline species -- 4. Summary and outlook. , References -- Chapter 7: CN formation reactions in water -- 1. Introduction -- 2. Homogeneous catalysts -- 3. Heterogeneous catalysts -- 4. Conclusions -- Acknowledgments -- References -- Chapter 8: Regioselective synthesis in water -- 1. Introduction -- 2. Metal catalyzed regioselective organic synthesis in water -- 3. Regioselective organo-catalytic reactions in aqueous media -- 4. A catalyst-free regioselective reaction in aqueous media -- References -- Chapter 9: Aqueous polymerizations -- 1. Introduction -- 2. Polymerization: Fundamentals and methods -- 2.1. Fundamentals of polymerization -- 2.2. Methods of polymerization: Solution polymerization -- 2.3. Methods of polymerization: Dispersion polymerization and polycondensation -- 2.4. Methods of polymerization: Suspension polymerizations and polycondensations -- 2.5. Emulsion polymerization and polycondensation -- 3. Free-radical polymerizations -- 4. Ionic polymerizations -- 4.1. Cationic polymerization -- 4.2. Anionic polymerization -- 5. Controlled radical polymerizations -- 5.1. Reversible addition-fragmentation chain-transfer polymerizations -- 5.2. Nitroxide-mediated polymerization -- 6. Metal-mediated polymerizations -- 6.1. Atom transfer radical polymerization -- 6.2. Ring-opening metathesis polymerization -- 7. Polycondensation -- 8. Conclusions -- Acknowledgments -- References -- Chapter 10: Microwave- and ultrasound-assisted heterocyclics synthesis in aqueous media -- 1. Introduction -- 2. Microwave-assisted heterocyclics synthesis in water -- 3. Ultrasound-assisted heterocyclics synthesis in water -- 4. Conclusion and future prospects -- References -- Chapter 11: Recent advances on carbon-carbon bond forming reactions in water -- 1. Introduction -- 2. Carbon-carbon coupling reactions -- 3. Couplings in water are biphasic -- 4. Heterogeneous catalysis. , 5. Factors affecting CC coupling reactions in water -- 5.1. Catalyst -- 5.2. Bimetallic catalysts -- 5.3. Base and concentration effect -- 5.4. Light water/heavy water -- 5.5. Energy source -- 5.6. Additives and transfer agents -- 6. Specific CC coupling reactions -- 6.1. Mizoroki-Heck reaction -- 6.2. Hiyama reaction -- 6.3. Suzuki-Miyaura reaction -- 6.4. Sonogashira-Hagihara reaction -- 6.5. Stille reaction -- 6.6. Negishi reaction -- 7. Applications in synthesis -- 7.1. Derivatization of biomolecules -- 7.2. Bioactive molecules -- 8. Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...