GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Schlagwort(e): Nanotechnology-Health aspects. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (446 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323951722
    DDC: 615.1
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Schlagwort(e): Organic compounds-Synthesis. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (590 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323996440
    DDC: 620.1180286
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Schlagwort(e): Environmental engineering. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (300 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128219010
    DDC: 541.39
    Sprache: Englisch
    Anmerkung: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Inorganic Synthesis -- Copyright -- Contents -- Contributors -- Chapter 1: Microwave-assisted green synthesis of inorganic nanomaterials -- Description -- Key features -- 1. Introduction -- 2. Technical aspects of microwave technique -- 2.1. Principles and heating mechanism of microwave method -- 2.2. Green solvents for microwave reactions -- 2.3. Microwave versus conventional synthesis -- 2.4. Microwave instrumentation -- 2.5. Advantages and limitations -- 3. MW-assisted green synthesis of inorganic nanomaterials -- 3.1. Metallic nanostructured materials -- 3.2. Metal oxides nanostructured materials -- 3.3. Metal chalcogenides nanostructured materials -- 3.4. Quantum dot nanostructured materials -- 4. Conclusions and future aspects -- 4.1. Challenges and scope to further study -- References -- Chapter 2: Green synthesis of inorganic nanoparticles using microemulsion methods -- Description -- Key features -- 1. Introduction -- 2. Fundamental aspects of microemulsion synthesis -- 2.1. Microemulsion and types -- 2.2. Micelles, types, and formation mechanism -- 2.3. Hydrophilic-lipophilic balance number -- 2.4. Surfactants and types -- 2.5. Advantages and limitations of microemulsion synthesis of nanomaterials -- 3. Microemulsion-assisted green synthesis of inorganic nanostructured materials -- 3.1. General mechanism microemulsion method for nanomaterial synthesis -- 3.2. Preparation of metallic and bimetallic nanoparticles -- 3.3. Metal oxide synthesis by microemulsion -- 3.4. Synthesis of metal chalcogenide nanostructured materials -- 3.5. Synthesis of inorganic quantum dots -- 4. Conclusions, challenges, and scope to further study -- References -- Chapter 3: Synthesis of inorganic nanomaterials using microorganisms -- 1. Introduction. , 2. Green approach for synthesis of nanoparticles -- 3. General mechanisms of biosynthesis -- 4. Optimization of nanoparticles biosynthesis -- 4.1. Effect of the temperature -- 4.2. Effect of pH -- 4.3. Effect of metal precursor concentration -- 4.4. Effect of culture medium composition -- 4.5. Effect of biomass quantity and age -- 4.6. Synthesis time -- 5. Biosynthesis of metal oxide nanoparticles -- 5.1. Bacteria-mediated synthesis -- 5.2. Fungi-mediated synthesis -- 5.3. Yeast-mediated synthesis -- 5.4. Algae- and viruses-mediated synthesis -- 6. Biosynthesis of metal chalcogenide nanoparticles -- 7. Final considerations -- References -- Chapter 4: Challenge and perspectives for inorganic green synthesis pathways -- 1. Introduction -- 2. Synthesis methods -- 2.1. Physical synthesis -- 2.1.1. Advantages -- 2.1.2. Inconvenient -- 2.2. Chemical synthesis -- 2.2.1. Advantages -- 2.2.2. Inconvenient -- 2.3. Green synthesis of inorganic nanomaterials and application -- 3. Challenge and perspectives -- 4. Conclusion -- References -- Chapter 5: Synthesis of inorganic nanomaterials using carbohydrates -- 1. Introduction -- 1.1. Types of nanomaterials -- 1.2. Approaches for the synthesis of inorganic nanomaterials -- 1.3. Characterization of inorganic nanomaterials -- 1.4. What are carbohydrates? -- 1.4.1. Types of carbohydrates -- Monosaccharides -- Oligosaccharides -- Polysaccharides -- 2. Synthesis of inorganic nanomaterials using carbohydrates -- 2.1. Synthesis of metal nanomaterials using carbohydrates -- 2.2. Synthesis of metal oxide-based nanomaterials using carbohydrates -- 2.3. Synthesis of nanomaterials using polysaccharides extracted from fungi and plant -- 3. The advantages and disadvantages of inorganic nanomaterials -- 4. Conclusion and future scope -- References -- Chapter 6: Fundamentals for material and nanomaterial synthesis. , 1. Introduction -- 2. Fundamental synthesis for materials -- 2.1. Solid-state synthesis -- 2.2. Chemical vapor transport -- 2.3. Sol-gel process -- 2.4. Melt growth (MG) method -- 2.5. Chemical vapor deposition -- 2.6. Laser ablation methods -- 2.7. Sputtering method -- 2.8. Molecular beam epitaxy method -- 3. Fundamental synthesis for nanomaterials -- 3.1. Top-down and bottom-up approaches -- 3.1.1. Ball milling (BL) synthesis process -- 3.1.2. Electron beam lithography -- 3.1.3. Inert gas condensation synthesis method -- 3.1.4. Physical vapor deposition methods -- 3.1.5. Laser pyrolysis methods -- 3.2. Chemical synthesis methods -- 3.2.1. Sol-gel method -- 3.2.2. Chemical vapor deposition method -- 3.2.3. Hydrothermal synthesis -- 3.2.4. Polyol process -- 3.2.5. Microemulsion technique -- 3.2.6. Microwave-assisted (MA) synthesis -- 3.3. Bio-assisted (B-A) methods -- 4. Conclusion -- References -- Chapter 7: Bioinspired synthesis of inorganic nanomaterials -- 1. Introduction -- 1.1. Nanomaterials and current limitations -- 1.2. Bioinspired synthesis -- 2. General mechanism of interaction -- 3. Bioinspired synthesis of inorganic nanomaterials -- 3.1. Microorganisms-mediated synthesis -- 3.2. Plant-mediated synthesis -- 3.2.1. Root extract assisted synthesis -- 3.2.2. Leaves extract assisted synthesis -- 3.2.3. Shoot-mediated synthesis -- 3.3. Protein templated synthesis -- 3.4. DNA-templated synthesis -- 3.5. Butterfly wing scales-templated synthesis -- 4. Applications of bioinspired nanomaterials -- 5. Conclusions -- References -- Chapter 8: Polysaccharides for inorganic nanomaterials synthesis -- 1. Introduction -- 2. Polysaccharides -- 2.1. Types of polysaccharides -- 2.1.1. Cellulose -- 2.1.2. Starch -- 2.1.3. Chitin -- 2.1.4. Chitosan -- 2.1.5. Properties of polysaccharides for bioapplications -- 3. Nanomaterials -- 3.1. Types of nanomaterials. , 3.1.1. Organic nanomaterials -- Carbon nanotubes -- Graphene -- Fullerenes -- 3.1.2. Inorganic nanomaterials -- Magnetic nanoparticles -- Metal nanoparticles -- Metal oxide nanoparticles -- Luminescent inorganic nanoparticles -- 3.2. Health effects of nanomaterials -- 4. Polysaccharide-based nanomaterials -- 4.1. Cellulose nanomaterials -- 4.1.1. Preparation of cellulose nanomaterials -- 4.1.2. Structure of cellulose nanomaterials -- 4.2. Chitin nanomaterials -- 4.2.1. Preparation of chitin nanomaterials -- 4.2.2. Structure and properties of chitin nanomaterials -- 4.3. Starch nanomaterials -- 4.3.1. Preparation of starch nanomaterials -- 4.3.2. Structure and properties of starch nanomaterials -- 5. Preparation of polysaccharide-based inorganic nanomaterials -- 5.1. Bulk nanocomposites -- 5.2. Composite nanoparticles -- 6. Applications of polysaccharide-based inorganic nanomaterials -- 6.1. Biotechnological applications -- 6.1.1. Bioseparation -- 6.1.2. Biolabeling and biosensing -- 6.1.3. Antimicrobial applications -- 6.2. Biomedical applications -- 6.2.1. Drug delivery -- 6.2.2. Digital imaging -- 6.2.3. Cancer treatment -- 6.3. Agricultural applications -- 7. Characterization of polysaccharide-based nanomaterials -- 7.1. Spectroscopy -- 7.1.1. Infrared (IR) spectroscopy -- 7.1.2. Surface-enhanced Raman scattering (SERS) -- 7.1.3. UV-visible absorbance spectroscopy -- 7.2. Microscopy -- 7.2.1. Scanning electron microscopy (SEM) -- 7.2.2. Transmission electron microscopy (TEM) -- 7.3. X-ray methods -- 7.4. Thermal analysis -- 8. Future prospects -- 9. Concluding remarks -- References -- Chapter 9: Supercritical fluids for inorganic nanomaterials synthesis -- 1. Introduction -- 2. The supercritical fluid as a substitute technology -- 2.1. What is supercritical fluid? -- 2.2. Supercritical antisolvent precipitation. , 2.3. Supercritical-assisted atomization -- 2.4. Sol-gel drying method -- 3. Synthesis in supercritical fluids -- 3.1. Route of supercritical fluids containing nanomaterials synthesis -- 3.2. Sole supercritical fluid -- 3.3. Mixed supercritical fluid -- 4. Theory of the synthesis of supercritical fluids containing nanomaterials -- 4.1. Supercritical fluids working process -- 4.2. Origin of nanoparticles -- 4.3. The rapid expansion of supercritical solutions -- 5. Conclusion -- References -- Chapter 10: Green synthesized zinc oxide nanomaterials and its therapeutic applications -- 1. Introduction -- 2. Green synthesis -- 3. ZnO NPs characterization -- 4. ZnO NPs synthesis by plant extracts -- 5. ZnO NPs synthesis by bacteria and actinomycetes -- 6. ZnO NPs synthesis by algae -- 7. ZnO NPs synthesis by fungi -- 8. NPs synthesis by virus -- 9. ZnO NPs synthesis with alternative green sources -- 10. Therapeutic applications -- 11. Conclusions -- References -- Chapter 11: Sonochemical synthesis of inorganic nanomaterials -- 1. Background -- 2. Inorganic nanomaterials in sonochemical synthesis -- 3. Applications -- 4. Final comments -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Schlagwort(e): Solvents-Environmental aspects. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (412 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128173879
    DDC: 541.3482
    Sprache: Englisch
    Anmerkung: Front Cover -- Green Sustainable Process for Chemical and Environmental Engineering and Science -- Copyright -- Contents -- Contributors -- Chapter 1: Conversion of biomass to chemicals using ionic liquids -- 1. Introduction -- 2. Biomass as a renewable resource of chemicals -- 2.1. Interaction among biomass components -- 2.2. Pretreatment of lignocellulosic biomass using ionic liquids -- 2.3. Lignocellulosic biomass conversion to various chemicals -- 3. Platform chemicals from lignocellulosic biomass -- 3.1. 5-HMF and EMF from lignocellulosic biomass -- 3.2. Levulinic acid from lignocellulosic biomass -- 4. Ionic liquids: Significant in conversion of lignocellulose to platform chemicals -- 4.1. Biomass conversion to chemicals using acidic ILs -- 5. Conversion of biomass to 5-HMF and EMF using ILs -- 6. LA from lignocellulosic biomass -- 7. Effects of ILs properties on conversion of cellulose/lignocellulose to LA -- 8. Summary -- References -- Chapter 2: Ionic liquids for enzyme-catalyzed production of biodiesel -- 1. Introduction -- 2. Influence of ionic liquid cation in biocatalyzed biodiesel production -- 2.1. Imidazolium-based ionic liquids -- 2.2. Other cations -- 3. Impact of ionic liquid anion in biocatalyzed biodiesel production -- 4. Biocatalysts employed in biodiesel production with ionic liquids -- 5. Substrates and acyl acceptors for biocatalyzed biodiesel production with ionic liquids -- 6. Operation temperature for biocatalyzed biodiesel production with ionic liquids -- 7. Conclusions -- References -- Chapter 3: Organic synthesis on ionic liquid support: A new strategy for the liquid-phase organic synthesis (LPOS) -- 1. Introduction -- 2. Synthesis of small molecules on ionic liquid support -- 3. Ionic liquid-supported reagents for organic synthesis -- 4. Ionic liquid-supported catalysts for organic synthesis. , 5. Conclusion and outllook -- References -- Further reading -- Chapter 4: Separation of volatile organic compounds by using immobilized ionic liquids -- 1. Introduction -- 2. Ionic liquids for the separation of organic compounds -- 3. Separation of organic volatile compounds by IL-based membranes -- 3.1. Supported ionic liquid membranes -- 3.1.1. Flat sheet-supported ionic liquid membranes -- 3.2. Hollow fiber-supported ionic liquid membranes -- 3.3. Anodic aluminum oxide/ionic liquid membranes -- 4. Conclusions -- References -- Chapter 5: Deep eutectic solvents -- 1. Introduction -- 2. Properties and characteristics of DES -- 3. Synthesis of DES -- 4. Application of DES in sample preparation -- 4.1. Food analysis -- 4.2. Environmental analysis -- 4.3. Biological analysis -- 5. Conclusions and future trends -- References -- Further reading -- Chapter 6: Ionic liquids as scavenger -- 1. Introduction -- 1.1. Solid- and solution-phase chemistry -- 1.2. Scavenger properties and mechanism -- 1.3. Ionic liquids as scavengers and their properties -- 2. Task-specific ionic liquids as scavenger -- 2.1. Amino-functionalized ionic liquids as scavenger -- 2.2. Diol-functionalized ionic liquid as scavenger -- 2.3. Ionic liquids functionalized with Michael acceptor as scavenger -- 2.4. Si-supported sulfonic acid-functionalized ionic liquid as scavenger -- 2.5. Carboxyl-functionalized ionic liquids as scavenger -- 2.6. Aldehyde-functionalized ionic liquids as scavenger -- 2.7. Azide-functionalized ionic liquid as scavenger -- 2.8. Amino acid-functionalized ionic liquid as scavenger -- 2.9. Chlorosalicylaldehyde-functionalized ionic liquids as scavenger -- 3. Conclusion -- References -- Chapter 7: Recent developments in ionic liquid-based electrolytes for energy storage supercapacitors and rechargeable b -- 1. Introduction. , 2. Recent developments in ionic liquid-based supercapacitors and batteries -- 3. Development of porous electrodes for ionic liquid electrolytes -- 4. Development of high operating temperature supercapacitors and batteries -- 5. Effect of cationic or anionic species on the electrochemical performance of ionic liquids -- 6. Conclusion -- References -- Chapter 8: Recent insights on solubility and stability of biomolecules in ionic liquid -- 1. Introduction -- 2. Available resources on properties of ionic liquids -- 3. Advantages of ILs for biomolecule-based applications -- 3.1. Biocompatibility and biodegrability of ILs -- 4. Biomolecules solubility and stability in ILs -- 4.1. Nucleic acids in ILs -- 4.2. Carbohydrates in ILs -- 4.3. Proteins in ILs -- 5. Conclusion -- References -- Chapter 9: Ionic liquid-based membranes for water softening -- 1. Introduction -- 1.1. Ionic liquids (ILs) -- 1.2. Water purification: Challenges and perspectives -- 2. Liquid membrane -- 3. Bulk membranes based on ionic liquids -- 3.1. Extraction of phenols -- 3.2. Extraction of metal ions -- 4. Emulsion liquid membranes -- 5. Supported liquid membranes (SLMs) -- 5.1. Flat sheet liquid membrane -- 5.1.1. IL-SLM as extracting agents for heavy metal ions -- 5.1.2. Extraction of endosulfan -- 5.1.3. Separation of volatile organic compounds by ILs -- 5.1.4. Removal of phenolic compounds from water -- 5.1.5. Separation of organic liquids -- 5.2. Hollow fiber-supported IL membrane -- 5.2.1. Extraction of phenols -- 5.2.2. Extraction of metal ions -- 6. Polymer inclusion membranes (PIMs) -- 6.1. Extraction of metal ions -- 6.2. Extraction of antibiotics -- 6.3. Extraction of organic molecules -- 7. Conclusions -- References -- Chapter 10: Ionic liquids in gas sensors and biosensors -- 1. Introduction -- 2. Properties of ILs -- 3. Transducers utilized in IL-based sensors. , 3.1. Electrochemical transducers -- 3.2. Mass-sensing transducers -- 3.3. Optical transducers -- 3.4. IL-modified electrodes -- 3.5. Multitransduction modes -- 4. Immobilization techniques -- 5. Applications of IL-based sensors and biosensors -- 6. Future prospects -- 6.1. Electronic nose instruments -- 6.2. Ion Jelly ionic liquids -- 6.3. 3-D printing technology -- 7. Conclusions -- References -- Further reading -- Chapter 11: Ionic liquids as gas sensors and biosensors -- 1. Introduction -- 2. Ionic liquid-based electrochemical biosensors -- 2.1. Ionic liquid-based carbon nanomaterial biosensors -- 2.2. Ionic liquid based biosensor/metal nanomaterials -- 2.3. Gel-based biosensors -- 3. Electrochemical gas sensors -- 3.1. Electrochemical gas sensor-Oxygen (O2) sensors -- 3.2. Electrochemical gas sensor-Nitrogen oxide (NOx) -- 4. Optical gas sensors -- 4.1. Optical oxygen gas sensors -- 4.2. Optical carbon dioxide gas sensors -- 5. Other forms of gas sensors and applications of ionic liquids -- 5.1. Gas seniors-semiconducting metal oxides -- 5.2. Carbon-IL composite gas sensors -- 6. Conclusion -- References -- Further reading -- Chapter 12: Imidazolium-based room temperature ionic liquids for electrochemical reduction of carbon dioxide to carbon mo ... -- 1. Introduction -- 2. Mechanistic aspects -- 2.1. Formation of imidazolium-CO2 adducts -- 2.2. Deactivation of imidazolium cation during CO2 ERR -- 2.3. Structural transitions of imidazolium ILs at electrode-electrolyte interface -- 3. Role of imidazolium ILs in homogeneous reduction of CO2 -- 4. Role of imidazolium ILs in heterogeneous reduction of CO2 -- 4.1. With noble metal-based electrodes -- 4.2. With nonnoble metal-based electrodes -- 4.3. With polymers -- 4.4. With carbon-based electrodes -- 5. Conclusion -- References. , Chapter 13: Ionic liquid based electrochemical sensors and their applications -- 1. Introduction -- 2. History of ionic liquids -- 3. Electrochemical properties of ionic liquids -- 4. Ionic liquid based electrochemical sensors -- 5. Ionic liquid applications in electrochemical sensors -- 6. Conclusions -- References -- Index -- Back Cover.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Schlagwort(e): Green chemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (426 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323998178
    DDC: 621.312424
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Schlagwort(e): Environmental engineering. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (302 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128218976
    DDC: 543
    Sprache: Englisch
    Anmerkung: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Analytical Techniques for Environmental a... -- Copyright -- Contents -- Contributors -- Chapter 1: Conventional and advanced techniques of wastewater monitoring and treatment -- 1. Introduction -- 2. Water pollutants: Origin and consequences -- 3. Wastewater analysis -- 3.1. Lab-based analytical methods -- 3.2. Field monitoring techniques -- 3.2.1. Biosensors -- Biosensors for detection of organic contaminants in wastewater -- Biosensors for detection of inorganic contaminants in water -- Biosensors for detection of microorganisms in water -- 3.2.2. Nanoparticle-assisted sensing platform -- 3.2.3. Paper-based microfluidics sensors -- 3.2.4. Soft sensors -- 3.3. Wireless sensor networks -- 4. Wastewater treatment -- 4.1. Conventional wastewater treatment methods -- 4.1.1. Primary treatment -- 4.1.2. Secondary treatment -- Aerobic treatment -- Anaerobic treatment -- Activated sludge process -- Biological filters -- Vermifiltration -- Rotating biological contractors -- Phytoremediation -- Microbial fuel cells -- 4.1.3. Tertiary treatment -- 4.2. Advanced wastewater treatment methods -- 4.2.1. Membrane filtration -- 4.2.2. Advanced oxidation processes -- 4.2.3. UV irradiation -- 4.2.4. Other advanced methods -- 4.3. Commercialized wastewater treatments -- 5. Future perspectives -- References -- Chapter 2: UV-vis spectrophotometry for environmental and industrial analysis -- 1. Introduction -- 2. The electromagnetic spectrum -- 2.1. Electronic photophysical process -- 3. Limitations of Beer-Lambert Law -- 4. Importance of UV-vis spectroscopy for analysis -- 4.1. Quantitative analysis -- 4.2. Qualitative analysis -- 4.3. UV-vis spectrophotometry for environmental analysis -- 5. Water analysis -- 6. Polymer analysis -- 7. Microcarbon analysis -- 8. Dye analysis. , 8.1. Measurement of change in coloration -- 8.2. Removal of metal salts -- 8.3. Regulations in environmental control -- 8.4. Wastewater fingerprinting -- 8.5. Colored ink -- 8.6. UV-vis spectrophotometry for industrial analysis -- 8.6.1. Presence of colorants -- 8.6.2. Removal of colorants -- 8.7. Presence of organic content -- 8.8. Presence of natural products -- 8.9. Petrochemical industry -- 8.10. Waste management -- 9. Conclusion -- References -- Chapter 3: Chemical oxygen demand and biochemical oxygen demand -- 1. Introduction -- 2. Redox chemistry in water -- 3. Oxygen demand [1, 2] -- 4. Biological oxygen demand -- 5. Analysis of biochemical oxygen demand -- 5.1. Standard method -- 5.1.1. Winkler's method [6] -- 5.2. Technological advancement in standard methods -- 5.3. BOD methods for rapid determination of results -- 6. Chemical oxygen demand (COD) -- 6.1. Chemical reactions involved in COD determination [16] -- 6.2. Modification of conventional COD method -- 6.3. Mercury free methods -- 6.4. Electrochemical and photocatalytic methods (lesser chemical use) -- 7. Conclusion -- References -- Chapter 4: Soil and sediment analysis -- 1. Introduction -- 2. Methods for analysis of organic compounds -- 2.1. Pharmaceuticals -- 2.2. Phenols-alkylphenols and bisphenol A -- 2.3. Polycyclic aromatic hydrocarbons -- 2.4. Phthalates -- 2.5. Organometallic and organometalloid compounds -- 3. Microplastics -- 4. Quality assurance -- Funding -- References -- Chapter 5: Liquid chromatography-mass spectrometry techniques for environmental analysis -- 1. Introduction -- 2. Advances in extraction techniques of environmental samples for LC-MS -- 2.1. Microextraction techniques -- 2.2. Extraction techniques involving nanomaterials -- 2.3. Extraction techniques involving ionic liquids -- 3. Advances in liquid chromatography instrumentation. , 4. Advances in mass spectrometry detection -- 5. Applications of LC/MS for environmental analysis -- 6. Conclusions -- References -- Chapter 6: Green analytical chemistry for food industries -- 1. Introduction -- 2. Analytical detection -- 2.1. Qualitative methods -- 2.2. Quantitative methods -- 3. Emerging extraction technologies -- 3.1. Supercritical fluid extraction -- 3.2. Pressurized liquid extraction -- 3.3. Microwave-assisted extraction -- 3.4. Ultrasound-assisted extraction -- 4. Miniaturization of online emerging extraction techniques with analytical detection: Current trends in the use of SFE a ... -- 4.1. Sample preparation: Extraction vessel packaging -- 4.2. Extraction mode -- 4.2.1. Selection of the mobile phase -- 4.3. Separation and detection of analytes -- 5. Conclusion -- References -- Chapter 7: Immunoassays applications -- 1. Introduction -- 2. Conventional vs microscale immunoassay sensors -- 3. Substrates -- 3.1. Silicon -- 3.2. Glass -- 3.3. Polymers -- 3.4. Paper -- 3.5. Hybrid -- 4. Fluid transport mechanisms -- 4.1. Active -- 4.2. Passive -- 5. Detection methodologies -- 5.1. Colorimetric -- 5.2. Fluorescence -- 5.3. Surface plasmon resonance -- 5.4. Electrochemical -- 5.5. Mechanical -- 6. Conclusions and outlook -- References -- Chapter 8: High-performance liquid chromatographic techniques for determination of organophosphate pesticides in complex matr -- 1. Introduction -- 2. Environmental fate of pesticides -- 3. Analytical methods used for pesticides determination -- 4. High-performance liquid chromatography -- 4.1. Types of HPLC -- 4.1.1. Normal-phase HPLC -- 4.1.2. Reverse-phase HPLC -- 4.2. HPLC column -- 4.3. Mode of elution -- 4.3.1. Isocratic HPLC -- 4.3.2. Gradient HPLC -- 4.4. Detectors used for the analysis of organophosphate pesticides -- 5. Sample preparation for HPLC analysis of organophosphate pesticides. , 6. Detection and quantification of organophosphate pesticides from complex matrices using high-performance liquid chromat ... -- References -- Chapter 9: Application of the GC/MS technique in environmental analytics: Case of the essential oils -- 1. Introduction -- 2. GC/MS as a modern technique for analysis of essential oils -- 3. Practical application of the polar column in the analysis of essential oils -- 4. Conclusion -- References -- Chapter 10: Remote sensing for environmental analysis: Basic concepts and setup -- 1. Introduction -- 2. Practical examples -- 2.1. Improving environmental assessments through remote sensing -- 3. Key concepts to/in remote sensing -- 4. Historical background of remote sensing -- 4.1. Historical beginning -- 4.2. Remote sensing to environment applications -- 4.2.1. Hyperspectral imaging -- 4.2.2. Field spectrometry -- 4.2.3. Light detection and ranging (LiDAR) -- 5. Remote sensing sensors -- 5.1. Imaging sensors -- 5.2. Non-imaging sensors -- 6. Quality assurance and quality control (QA/QC) in environmental monitoring by remote sensing -- 7. Perspectives and conclusion -- References -- Chapter 11: Materials science and lab-on-a-chip for environmental and industrial analysis -- 1. Introduction -- 2. Lab-on-a-chip concept and components -- 3. Materials science on LOC technology -- 4. Environmental analysis and pollutant monitoring -- 5. Autonomous LOC prototype -- 6. Challenges and future prospects of LOC technology -- 7. Conclusion -- References -- Chapter 12: Destructive and nondestructive techniques of analyses of biofuel characterization and thermal valorization -- 1. Introduction -- 2. Materials preparation -- 2.1. Thermal densification processes -- 2.2. Mechanical densification processes -- 3. Destructive analyses for materials characterization -- 3.1. Generalities on destructive methods. , 3.2. Destructive methods in solid biofuel characterization -- 3.2.1. Thermogravimetry analysis (ATG) -- 3.2.2. High heating value determination -- 3.2.3. Ultimate analysis -- 4. Nondestructive methods for material characterization -- 4.1. Generalities -- 4.2. Nondestructive methods in solid biofuel characterization -- 4.2.1. Inductively coupled plasma atomic emission spectroscopy technique -- 4.2.2. Gaseous emission analysis using TESTO equipment -- 4.2.3. Particulate matter (PM) measurements -- 4.2.4. Bottom ash characterization and measurements -- References -- Chapter 13: Application of nanoparticles as a chemical sensor for analysis of environmental samples -- 1. Introduction -- 2. Synthesis of nanoparticles (NPs) -- 2.1. Platinum nanoparticles (PtNPs) -- 2.2. Gold nanoparticles (AuNPs) -- 2.3. Silver nanoparticles (AgNPs) -- 2.4. Copper nanoparticles (CuNPs) -- 2.5. Silica nanoparticles (SiNPs) -- 2.6. Magnetic nanoparticles (MNPs) -- 2.7. Carbon nanotubes (CNTs) -- 2.8. Graphene quantum dots (GQDs) -- 3. Characterization of nanoparticles -- 4. Properties of nanoparticles -- 4.1. Surface plasmon resonance (SPR) and color of NPs -- 4.2. Surface area -- 4.3. Magnetic properties -- 4.4. Electronic properties -- 5. Different class of chemical substances -- 5.1. Heavy metals -- 5.1.1. Essential metals -- 5.1.2. Toxic metals -- 5.2. Pesticides and fungicides -- 5.3. Aromatic and VOC's compounds -- 5.4. Surfactants -- 5.5. Other chemical substances -- 6. Analytical techniques for detection of chemical substance in environmental samples -- 6.1. Colorimetric sensing -- 6.2. Fluorescence sensing -- 6.3. Electrochemical sensing -- 6.4. Surface-enhanced Raman spectroscopic (SERS) sensing -- 7. Conclusions -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Schlagwort(e): Organic compounds-Synthesis. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (412 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128198490
    DDC: 547/.2
    Sprache: Englisch
    Anmerkung: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Organic Synthesis in Water and Supercriti... -- Copyright -- Contents -- Contributors -- Chapter 1: Polymer synthesis in water and supercritical water -- 1. Introduction -- 1.1. Water in industries -- 1.2. Supercritical fluids -- 1.3. Properties of water and supercritical water -- 2. Polymerization in water medium -- 2.1. Emulsion polymerization -- 2.2. Photoactivated polymerization -- 2.3. Dispersion polymerization -- 2.4. Controlled/``living´´ radical polymerization -- 2.5. Radical polymerization -- 2.6. Oxidative polymerization -- 2.7. Solution polymerization -- 2.8. Enzyme-catalyzed polymerization -- 3. Supercritical water in polymer technology -- 3.1. Supercritical water in lignocellulosic polymers -- 3.1.1. Cellulose -- 3.1.2. Hemicellulose -- 4. Conclusion -- Acknowledgment -- References -- Chapter 2: Ring-opening reactions in water -- 1. N-nucleophiles -- 1.1. Aliphatic and aromatic amines -- 1.1.1. Racemic synthesis of β-amino alcohols -- 1.1.2. Enantioselective synthesis of β-amino alcohols -- 1.2. Azidolysis -- 2. O-nucleophiles -- 3. S-nucleophile -- 4. C-nucleophiles -- 5. Se-nucleophile -- 6. H-nucleophiles -- References -- Chapter 3: Cycloaddition reactions in water -- 1. Introduction -- 2. ``In-water´´ cycloaddition reactions -- 2.1. [4+2] Cycloaddition (Diels-Alder) reactions -- 2.2. Hydrophobicity effect on rate enhancement in water -- 2.2.1. Structure facilitated hydrophobic effect -- 2.3. Hydrogen-bonding effect on rate enhancement -- 2.4. Endo- vs exo-selectivity in intermolecular D-A reactions -- 2.5. Inverse electron demand D-A reactions in water -- 2.6. Asymmetric Diels-Alder reactions in water -- 2.7. Application to the total synthesis of natural products -- 2.8. Intramolecular Diels-Alder reactions in water. , 2.9. Aqueous intramolecular D-A reaction in the total synthesis -- 2.10. [3+2] Cycloaddition reactions in water -- 2.11. [4+3] Cycloaddition reaction -- 2.12. [2+2+2] Cycloadditions -- 2.13. [5+2] Cycloadditions -- 3. Cycloaddition reactions ``on-water´´ -- 4. Concluding remarks -- Acknowledgments -- References -- Chapter 4: Hydrogenation reactions in water -- 1. Introduction -- 2. Types of hydrogenation -- 2.1. Catalytic hydrogenation -- 2.2. Transfer hydrogenation -- 2.3. Asymmetric hydrogenation -- 2.4. Asymmetric transfer hydrogenation -- 2.5. Electrocatalytic hydrogenation -- 2.6. Selective hydrogenation -- 2.6.1. Chemoselective hydrogenation -- 2.6.2. Diastereoselective hydrogenation -- 2.6.3. Regioselective hydrogenation -- 2.7. Other hydrogenation -- 3. Water as hydrogen donor -- 3.1. Synthesis of aliphatic compounds -- 3.2. Synthesis of aromatic compounds -- 3.3. Synthesis of carbonyl compounds -- 3.4. Synthesis of alcohols, ethers, sugars, nitro and nitril compounds -- 3.5. Synthesis of bio-oils, fossil fuel, and cellulose -- 4. Water as solvent -- 4.1. Synthesis of aliphatic compounds -- 4.2. Synthesis of aromatic compounds -- 4.3. Synthesis of carbonyl compounds -- 4.4. Synthesis of alcohols, ethers, sugars, nitro, and nitril compounds -- 5. Conclusion -- References -- Chapter 5: Magnetically separable nanocatalyzed synthesis of bioactive heterocycles in water -- 1. Introduction -- 2. Synthesis of nitrogen-containing heterocycles -- 2.1. Synthesis of N-substituted pyrroles -- 2.2. Synthesis of 1,4-dihydropyridines -- 2.3. Synthesis of hexahydroquinoline carboxylates -- 2.4. Synthesis of quinolines -- 2.5. Synthesis of acridine-1,8(2H,5H)-diones -- 2.6. Synthesis of benzo[d]imidazoles -- 2.7. Synthesis of imidazo[1,2-a]pyridines -- 2.8. Synthesis of quinoxalines -- 2.9. Synthesis of 1,2,3-triazoles. , 2.10. Synthesis of pyrimido[4,5-b]quinoline and indeno fused pyrido[2,3-d]pyrimidines -- 2.11. Synthesis of pyrido[2,3-d:6,5-d]dipyrimidines -- 2.12. Synthesis of spiropyrazolo pyrimidines -- 2.13. Synthesis of spiro[indoline-3,5-pyrido[2,3-d]pyrimidine] derivatives -- 2.14. Synthesis of 2-amino-tetrahydro-1H-spiro[indoline-3,4-quinoline] derivatives -- 2.15. Synthesis of spiro[indoline-3,2-quinoline] derivatives -- 3. Synthesis of oxygen-containing heterocycles -- 3.1. Synthesis of 4-methylcoumarins -- 3.2. Synthesis of 2-amino-3-cyano-4H-chromenes -- 3.3. Synthesis of 2-amino-4H-chromen-4-yl phosphonates -- 3.4. Synthesis of tetrahydro-1H-xanthen-1-one -- 3.5. Synthesis of pyran annulated scaffolds -- 4. Synthesis of nitrogen as well as oxygen-containing heterocycles -- 4.1. Synthesis of furo[3,4-b]quinoline derivatives -- 4.2. Synthesis of spiro[furo[3,4:5,6]pyrido[2,3-d]pyrimidine-5,3-indoline] derivatives -- 4.3. Synthesis of spirooxindole derivatives -- 4.4. Synthesis of pyrrole fused heterocycles -- 4.5. Synthesis of pyrano[2,3-c]pyrazoles -- 4.6. Synthesis of tetrahydropyrano[3,2-c]quinolin-5-ones -- 4.7. Synthesis of chromeno[1,6]naphthyridines -- 4.8. Synthesis of 1H-naphtho[1,2-e][1,3]oxazine derivatives -- 5. Conclusions -- Acknowledgments -- References -- Chapter 6: Stereoselective organic synthesis in water: Organocatalysis by proline and its derivatives -- 1. Introduction -- 2. Reactions in homogeneous solution or micellar media -- 2.1. Aldol reaction -- 2.2. Knoevenagel condensation -- 2.3. Michael addition -- 2.4. Mannich reaction -- 2.5. Diels-Alder reaction -- 2.6. α-Aminoxylation -- 2.7. Asymmetric hydrogenation -- 3. Reactions catalyzed by solid-supported proline derivatives -- 3.1. Reactions catalyzed by silica-supported proline species -- 3.2. Reactions catalyzed by polymer-supported proline species -- 4. Summary and outlook. , References -- Chapter 7: CN formation reactions in water -- 1. Introduction -- 2. Homogeneous catalysts -- 3. Heterogeneous catalysts -- 4. Conclusions -- Acknowledgments -- References -- Chapter 8: Regioselective synthesis in water -- 1. Introduction -- 2. Metal catalyzed regioselective organic synthesis in water -- 3. Regioselective organo-catalytic reactions in aqueous media -- 4. A catalyst-free regioselective reaction in aqueous media -- References -- Chapter 9: Aqueous polymerizations -- 1. Introduction -- 2. Polymerization: Fundamentals and methods -- 2.1. Fundamentals of polymerization -- 2.2. Methods of polymerization: Solution polymerization -- 2.3. Methods of polymerization: Dispersion polymerization and polycondensation -- 2.4. Methods of polymerization: Suspension polymerizations and polycondensations -- 2.5. Emulsion polymerization and polycondensation -- 3. Free-radical polymerizations -- 4. Ionic polymerizations -- 4.1. Cationic polymerization -- 4.2. Anionic polymerization -- 5. Controlled radical polymerizations -- 5.1. Reversible addition-fragmentation chain-transfer polymerizations -- 5.2. Nitroxide-mediated polymerization -- 6. Metal-mediated polymerizations -- 6.1. Atom transfer radical polymerization -- 6.2. Ring-opening metathesis polymerization -- 7. Polycondensation -- 8. Conclusions -- Acknowledgments -- References -- Chapter 10: Microwave- and ultrasound-assisted heterocyclics synthesis in aqueous media -- 1. Introduction -- 2. Microwave-assisted heterocyclics synthesis in water -- 3. Ultrasound-assisted heterocyclics synthesis in water -- 4. Conclusion and future prospects -- References -- Chapter 11: Recent advances on carbon-carbon bond forming reactions in water -- 1. Introduction -- 2. Carbon-carbon coupling reactions -- 3. Couplings in water are biphasic -- 4. Heterogeneous catalysis. , 5. Factors affecting CC coupling reactions in water -- 5.1. Catalyst -- 5.2. Bimetallic catalysts -- 5.3. Base and concentration effect -- 5.4. Light water/heavy water -- 5.5. Energy source -- 5.6. Additives and transfer agents -- 6. Specific CC coupling reactions -- 6.1. Mizoroki-Heck reaction -- 6.2. Hiyama reaction -- 6.3. Suzuki-Miyaura reaction -- 6.4. Sonogashira-Hagihara reaction -- 6.5. Stille reaction -- 6.6. Negishi reaction -- 7. Applications in synthesis -- 7.1. Derivatization of biomolecules -- 7.2. Bioactive molecules -- 8. Conclusions -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Schlagwort(e): Microbiology. ; Plant biochemistry. ; Microbial ecology. ; Plant physiology.
    Beschreibung / Inhaltsverzeichnis: Chapter 1. Antimicrobial polymers -- Chapter 2. Starch based antimicrobial materials -- Chapter 3. Cellulose-based antimicrobial materials -- Chapter 4. Polymerized ionic liquids as antimicrobial materials -- Chapter 5. Silver composites as antimicrobial materials -- Chapter 6. Natural antimicrobial materials -- Chapter 7. Advanced antimicrobial materials and applications -- Chapter 8. Antimicrobial magnetic nanoparticles: A potential antibiotic Agent in The Era of multi-drug resistance -- Chapter 9. Antifungal, antimycotoxigenic, and antioxidant activity of essential oils and medicinal plant extracts -- Chapter 10. Antibacterial Electrospun nanofibres -- Chapter 11. Plant extracts: antimicrobial properties, mechanisms of action and applications -- Chapter 12. Antimicrobial materials for local drug delivery -- Chapter 13. Antimicrobial membranes for water treatment -- Chapter 14. Antimicrobial fillers for dental restorative materials -- Chapter 15. Molecular imprinting technology: A new approach for antibacterial materials.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(VII, 421 p. 155 illus., 71 illus. in color.)
    Ausgabe: 1st ed. 2021.
    ISBN: 9789811570988
    Serie: Environmental and Microbial Biotechnology
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Schlagwort(e): Plant biochemistry. ; Microbiology. ; Microbial ecology. ; Plant breeding. ; Molecular ecology.
    Beschreibung / Inhaltsverzeichnis: Chapter 1. Application of microbial biosurfactants in the food industry -- Chapter 2. Microbial biosurfactants for contamination of food processing -- Chapter 3. Antioxidant Biosurfactants -- Chapter 4. Classification and production of microbial surfactants -- Chapter 5. Microbial biosurfactants and their potential applications: an overview -- Chapter 6. Biodegradation of hydrophobic polycyclic aromatic hydrocarbons -- Chapter 7. Surfactin -a biosurfactant against breast cancer -- Chapter 8. Anti-cancer biosurfactants -- Chapter 9. Biosurfactant for oil-pollution remediation -- Chapter 10. Potential Applications of Anti-adhesive Biosurfactants -- Chapter 11. Applications of bio-surfactant for microbial bioenergy/value-added bio-metabolite recovery from waste activated sludge -- Chapter 12. Application of microbial biosurfactants in the pharmaceutical industry -- Chapter 13. Antibacterial Biosurfactants -- Chapter 14. Microbial biosurfactants as cleaning and washing agents.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(VIII, 314 p. 66 illus., 32 illus. in color.)
    Ausgabe: 1st ed. 2021.
    ISBN: 9789811566073
    Serie: Environmental and Microbial Biotechnology
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Schlagwort(e): Microbiology. ; Microbial ecology. ; Environmental engineering. ; Biotechnology. ; Mikrobieller Abbau
    Beschreibung / Inhaltsverzeichnis: 1 Microbial degradation of aflatoxin -- 2 Recent Advances in Microbial Degradation -- 3 Microbial Degradation in the Biogas Production of Value-added Compounds -- 4 Microbial Degradation of Disinfectants -- 5 Application of Microalgae Consortia / Cocultures in Wastewater Treatment -- 6 Microbial Degradation of Food Products -- 7 Microbial Degradation of Xenobiotic Compounds -- 8 Microbial Degradation in the Production of Value-added Compounds: Biohydrogen from Dark Fermentation and Microbial Electrolysis cell -- 9 Microbial Degradation of Lipids -- 10 Microbial Degradation of Steroids -- 11 Microbial Degradation of Phenol and Phenolic Compounds -- 12 Microbial Degradation of Chlorophenolic Compounds -- 13 Microbial Degradation of Proteins -- 14 The Microbial Degradation of Microplastics -- 15 Microbial Degradation of Antibiotics from Effluents -- 16 Microbial Degradation of Oils -- 17 Microbial Degradation of Biowaste for Hydrogen Production -- 18 Microorganisms and Soil Bioremediation: An Environmental Approach -- 19 Applications of Microbes in Bioremediation of Water Pollutants. .
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(VII, 483 p. 88 illus., 34 illus. in color.)
    Ausgabe: 1st ed. 2021.
    ISBN: 9789811605185
    Serie: Environmental and Microbial Biotechnology
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...