GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-02-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-11
    Description: The crabeater seal (Lobodon carcinophaga) is the most abundant Antarctic seal and inhabits the circumpolar pack ice zone of the Southern Ocean. Until now, information on important environmental factors affecting its distribution as well as on foraging behaviour is limited. In austral summer 1998, 12 crabeater seals of both sexes and different age classes were equipped with satellite-linked dive recorders at Drescher Inlet (72.85°S, 19.26°E), eastern Weddell Sea. To identify suitable habitat conditions within the Weddell Sea, a maximum entropy (Maxent) modelling approach was implemented. The model revealed that the eastern and southern Weddell Sea is especially suitable for crabeater seals. Distance to the continental shelf break and sea ice concentration were the two most important parameters in modelling species distribution throughout the study period. Model predictions demonstrated that crabeater seals showed a dynamic response to their seasonally changing environment emphasized by the favoured sea ice conditions. Crabeater seals utilized ice-free waters substantially, which is potentially explained by the comparatively low sea ice cover of the Weddell Sea during summer 1998. Diving behaviour was characterized by short (〉90 % = 0–4 min) and shallow (〉90 % = 0–51 m) dives. This pattern reflects the typical summer and autumn foraging behaviour of crabeater seals. Both the distribution and foraging behaviour corresponded well with the life history of the Antarctic krill (Euphausia superba), the preferred prey of crabeater seals. In general, predicted suitable habitat conditions were congruent with probable habitats of krill, which emphasizes the strong dependence on their primary prey.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-17
    Description: Tolerance of organisms towards heterogeneous and variable environments is highly related to physiological flexibility. An effective strategy to enhance physiological flexibility is the expression of polymorphic enzymes. This seems to be the case in the brown shrimp Crangon crangon. It shows high reproduction rates, feeds opportunistically on endo- and epibenthic organisms, and is apparently well adapted to variable environmental conditions. Previous electrophoretic studies revealed a high level of polymorphism and no consistent phenotype of digestive enzymes between individuals. In order to understand the underlying biochemical processes, we carried out a transcriptome-based study of digestive enzymes of C. crangon. Detailed sequence analyses of triacylglycerol lipase, phospholipase A2, alpha amylase, chitinase, trypsin and cathepsin L were performed to identify putative isoforms. The number of isoforms, and thus the degree of polymorphism varied among enzymes: lipases and carbohydrases showed higher numbers of isoforms in enzymes that besides their extracellular function also have diverse intracellular functions. Furthermore, cysteine proteinases showed a lower polymorphism than serine proteinases. We suggest that the expression of enzyme isoforms improves the efficiency of C. crangon in gaining energy from different food sources.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-05
    Description: Adult Euphausia superba survive winter without or with little feeding. It is not exactly known whether the scarcity of food or an internal clock, set by the natural Antarctic light regime, are responsible for non-feeding. Our research questions were therefore the following: (1) How will physiological and biochemical conditions of krill change during long-term starvation at constant light regime? (2) If and how do enzyme activities change during such starvation? (3) What is the influence of food availability versus that of light regime? To answer these questions, adult krill were starved under laboratory conditions for 12 weeks with constant light regime (12:12; dark/light) and the impact on physiological functions was studied. Initial experimental condition of krill resembled the condition of late spring krill in the field with fully active metabolism and low lipid reserves. Metabolic activity and activities of enzymes catabolising lipids decreased after the onset of starvation and remained low throughout, whereas lipid reserves declined and lipid composition changed. Mass and size of krill decreased while the inter-moult period increased. Depletion of storage- and structural metabolites occurred in the order of depot lipids and glycogen reserves after onset of starvation until proteins were almost exclusively used after 6–7 weeks of starvation. Results confirmed various proposed overwintering mechanisms such as metabolic slowdown, slow growth or shrinkage and use of lipid reserves. However, these changes were set in motion by food shortage only, i.e.without the trigger of a changing light regime.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Aquaculture, ELSEVIER SCIENCE BV, 400-40, pp. 53-60, ISSN: 0044-8486
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Experimental Marine Biology and Ecology, ELSEVIER SCIENCE BV, 469, pp. 143-149, ISSN: 0022-0981
    Publication Date: 2015-06-09
    Description: Calanoid copepods in boreal and polar habitats are confronted with a strong variability in food supply. The abundant species in the Southern North Sea, Temora longicornis, cannot accumulate extensive energy stores to buffer longer periods of food paucity. These copepods react immediately to dietary changes and therefore, recent trophic conditions must strongly influence their metabolic and functional responses. To elucidate the implications of feeding history, we collected two cohorts of T. longicornis females, which were characterized by different feeding histories and consequently different physiological backgrounds. In the North Sea in April 2005, females fed at a higher trophic level than in May, were poor in lipids, showed low proteinase activity and produced 41 eggs female-1 d-1. In May, females were significantly smaller than in April, contained more lipids, had a higher proteinase activity and produced 26 eggs female-1 d-1. In the laboratory, females from each group were fed with either autotrophic diatoms or heterotrophic dinoflagellates for three days. Irrespective of different initial conditions, all T. longicornis females incorporated diet-specific fatty acids within 24 h. Also in both experiments and each dietary treatment, egg production increased after 24 h indicating that females were food-limited in situ in April and in May. Responses differed, however, with regard to lipid accumulation and enzyme activities . Total lipid contents increased significantly in females during experiment I (April) but not during experiment II (May), despite higher algal lipid levels during experiment II. Proteolytic activity increased during experiment I, but decreased during experiment II. These deviating responses of T. longicornis females to food conditions suggest that detailed knowledge about the initial physiological state of specimens is required, when investigating adaptive mechanisms and metabolic performances of copepods by means of experiments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...