GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: A 20-kDa DNA-binding protein that binds the AT-rich sequences within the promoters of the brain-specific protein kinase C (PKC) γ and neurogranin/RC3 genes has been characterized as chromosomal nonhistone high-mobility-group protein (HMG)-I. This protein is a substrate of PKC α, β, γ, and δ but is poorly phosphorylated by PKC ε and ζ. Two major (Ser44 and Ser64) and four minor phosphorylation sites have been identified. The extents of phosphorylation of Ser44 and Ser64 were 1:1, whereas those of the four minor sites all together were 〈30% of the major one. These PKC phosphorylation sites are distinct from those phosphorylated by cdc2 kinase, which phosphorylates Thr53 and Thr78. Phosphorylation of HMG-I by PKC resulted in a reduction of DNA-binding affinity by 28-fold as compared with 12-fold caused by the phosphorylation with cdc2 kinase. HMG-I could be additively phosphorylated by cdc2 kinase and PKC, and the resulting doubly phosphorylated protein exhibited a 〉 100-fold reduction in binding affinity. The two cdc2 kinase phosphorylation sites of HMG-I are adjacent to the N terminus of two of the three predicted DNA-binding domains. In comparison, one of the major PKC phosphorylation sites, Ser64, is adjacent to the C terminus of the second DNA-binding domain, whereas Ser44 is located within the spanning region between the first and second DNA-binding domains. The current results suggest that phosphorylation of the mammalian HMG-I by PKC alone or in combination with cdc2 kinase provides an effective mechanism for the regulation of HMG-I function.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-01
    Description: Cases of convergent evolution, particularly within ecomorphological contexts, are instructive in identifying universally adaptive morphological features across clades. Tracing of evolutionary pathways by which ecomorphological convergence takes place can further reveal mechanisms of adaptation, which may be strongly influenced by phylogeny. Ecomorphologies of carnivorous mammals represent some of the most outstanding cases of convergent evolution in the Cenozoic radiation of mammals. This study examined patterns of cranial shape change in the dog (Canidae) and hyena (Hyaenidae) families, in order to compare the evolutionary pathways that led to the independent specialization of bone-cracking hypercarnivores within each clade. Geometric morphometrics analyses of cranial shape in fossil hyaenids and borophagine canids provided evidence for deep-time convergence in morphological pathways toward the independent evolution of derived bone-crackers. Both clades contained stem members with plesiomorphic generalist/omnivore cranial shapes, which evolved into doglike species along parallel pathways of shape change. The evolution of specialized bone-crackers from these doglike forms, however, continued under the constraint of a full cheek dentition and restriction on rostrum length reduction in canids, but not hyaenids. Functionally, phylogenetic constraint may have limited borophagine canids to crack bones principally with their carnassial instead of the third premolar as in hyaenids, but other cranial shape changes associated with durophagy nevertheless evolved in parallel in the two lineages. Size allometry was not a major factor in cranial shape evolution in either lineage, supporting the interpretation of functional demands as drivers for the observed convergence. The comparison between borophagines and hyaenids showed that differential effects of alternative functional "solutions" that arise during morphological evolution may be multiplied with processes of the "macroevolutionary ratchet" already in place to further limit the evolutionary pathways available to specialized lineages.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...